
Tutorials

https://docs.crossriver.com/

1. Tutorials

2. Customer management

2.1. Onboard a customer

2.2. Add a beneficial owner

2.3. Add ID details

3. Accounts

3.1. Open an account

3.2. Open a subledger

3.3.Withdraw CD funds early

4. Cards

4.1. Create a card

4.2. Activate a card

4.3. Simulate card management

5. Instant payments

5.1. Send an instant payment

5.2. Get service info

5.3. Set payment expiration

5.4. Fraud reporting

6. Card payments

6.1. Send a push transaction

6.2. Send a pull transaction

6.3. Set up iFrame

7. International payments

8. ACH

8.1. Send an ACH payment

8.2. Send a client batch

8.3. Simulate inbound ACH payments

9.Wires

9.1. Send a wire payment

9.2. Send a drawdown request

9.3. Respond to a drawdown request

9.4. Simulate an inbound wire

10. Checks

1. Tutorials

Our tutorials are here to help you use Cross River’s APIs and platform features in real-world

scenarios. Whether you’re setting up account onboarding, instant payments, or webhooks,

these guides will take you from idea to implementation quickly and easily. Each tutorial

comes with sample requests, code snippets, and best practices. This way, you can speed

up your development and avoid any guesswork.

 incorporating several different products in a single how-to.

Need help using our
APIs?

These step-by-step guides will

show you how to set up and

integrate key features.

Build a sample app

Customer Management International payments

Wires

Onboard a customer

Add a beneficial owner

Add ID details

Send an international payment

Send a wire payment

Send a drawdown request

Respond to a drawdown request

Simulate an inbound wire

Accounts

Cards

ACH

Instant payments

Checks

Card payments

Open a subledger

Open an account

Withdraw CD funds early

Create a card

Activate a card

Simulate card management

Send an ACH payment

Send a client batch

Simulate inbound ACH payments

Send an instant payment

Get service info

Set payment expiration

Deposit a check

Send a push transaction

Send a pull transaction

Set up iFrame

2. Customer management

Our customer management tutorials explain how to use our APIs to:

: Create a basic customer record in our system. Most products

and services require a customer record for each of your customers.

Onboard a customer

: Associate a beneficial owner with a business customer

record or use the beneficial owner field for BIN sponsorship.

Add a beneficial owner

: Add the details of an identification document such as a driver's

license or passport to a customer record.

Add ID details

2.1. Onboard a customer

Before you use banking services offered at Cross River, you need to create a customer

record for each of your customers. The customer onboarding process includes creating a

customer record and adding relevant customer information.

All customers are automatically scanned for regulatory compliance purposes, so you need

to register for relevant webhooks events to receive customer record status updates.

In this tutorial, you'll learn how to:

✅ Register the relevant webhooks

✅ Create a new customer

✅ Add relevant customer details, including customer address and phone number

✅ Retrieve information about a customer

The tutorial uses these API endpoints:

If you are new to customer management, we recommend you read our

 documentation.

The tutorial assumes you have a knowledge of APIs and how they work. Refer to

for more details.

customer

management

API

basics

The tutorial uses these webhooks:

Before you begin

Make sure you have:

Register the relevant webhook events

To receive the webhook events for this tutorial you need to each specific webhook

event type. Once you are registered, the event objects are sent to the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

API Description

POST /core/v1/cm/customers Create a new customer record

GET /core/v1/cm/customers/{customerId} Retrieve customer information

POST

/core/v1/cm/customers/{customerId}/addresses

Add or edit the customer address

POST

/core/v1/cm/customers/{customerId}/phones

Add or edit the customer phone

number

Webhook Description

Core.Customer.Onboarded Notifies you that the customer record has been created

Core.Customer.Ofac.Changed Notifies you that a customer's OFAC status has been

updated

Core.Customer.PepScan.Chan

ged

Notifies you that a customer's PEP status has been

updated

API credentials

Partner ID

register

After the request to onboard a customer is submitted, you need to stay informed of the

result of the compliance scan and that the customer record is created.

Register the customer

The customer record contains customer information. The customer record supports both

classifications of types Personal or Business. Once registered, a customer can be

associated with one or more accounts.

In this tutorial, we'll onboard Peter Griffin. First, let's create a customer record. We are

registering Peter as a Personal customer.

1 Call POST /core/v1/cm/customers . For this call these attributes are required:

To onboard a business customer, first create a personal customer record for the

primary owner of that business.

partnerId Your unique partner ID

classification The customer classification. Either:

Personal

Business

name The object containing the customer name details

profile The customer banking profile. This includes:

reg0

Politically exposed person (PEP)

Customer risk level

Tax ID and Tax ID type

IMPORTANT

We highly recommend you include an in your request header

to provide duplicate protection in the event of a failure.

idempotency key

The customer record is created.

The unique customer ID is the first line of the response body.

Curl

POST /core/v1/cm/customers

{

 "partnerId": "6e80b097-693c-4592-8440-02f345335bbf",

 "name": {

 "firstName": "Peter",

 "lastName": "Griffin"

 },

 "classification": "Personal",

 "profile": {

 "regO": false,

 "politicallyExposedPerson": false,

 "taxIdType": "Ssn",

 "taxId": "119988776",

 "birthDate": "1953-09-22",

 "riskRating": "Low"

 }

}

2 The Core.Customer.Onboarded webhook event is triggered when the customer

record is created.

Onboarding a customer response body

{

 "id": "9052b6a5-3f09-41d1-b526-ade80104eb79",

 "cifNumber": "32653745014",

 "classification": "Personal",

 "status": "Active",

 "ofac": "Pending",

 "pepScan": "Pending",

 "name": {

 "firstName": "Peter",

 "lastName": "Griffin",

 "fullName": "Peter Griffin"

 },

 "profile": {

 "regO": false,

 "politicallyExposedPerson": false,

 "enableBackupWithholding": false,

 "taxIdType": "Ssn",

 "taxId": "119988776",

 "birthDate": "1953-09-22",

 "riskRating": "Low"

 },

 "createdAt": "2021-01-25T17:55:24.4422582-05:00",

 "lastModifiedAt": "2021-01-25T17:55:24.4432543-05:00",

 "partnerId": "6e80b097-693c-4592-8440-02f345335bbf"

}

Cross River scans a new customer record for OFAC and PEP compliance.

On scan completion, Core.Customer.Ofac.Changed and

Core.Customer.PepScan.Changed webhook events return with a status. Customers

with no compliance issues show a Clear status.

Customer onboarded event

{

 "id": "3d9c5e1a-623b-4cf2-812e-ade80105048e",

 "eventName": "Core.Customer.Onboarded",

 "status": "Pending",

 "partnerId": "30dee145-b6a2-4058-8dc3-ac4000dee91f",

 "createdAt": "2021-11-22T10:50:20.553-05:00",

 "resources": [

 "core/v1/cm/customers/9052b6a5-3f09-41d1-b526-ade80104eb79"

],

 "details": []

}

Sometimes the results of the scan require a review by the our Anti-Money

Laundering (AML) team.

Customer OFAC scan changed

{

 "id": "45db5592-56ee-41f5-85e7-ade8010571ce",

 "eventName": "Core.Customer.Ofac.Changed",

 "status": "Pending",

 "partnerId": "30dee145-b6a2-4058-8dc3-ac4000dee91f",

 "createdAt": "2021-11-22T10:51:53.657-05:00",

 "resources": [

 "core/v1/cm/customers/9052b6a5-3f09-41d1-b526-ade80104eb79"

],

 "details": []

}

3 To retrieve the results of the OFAC and PEP scans, call GET

core/v1/cm/customers/{id} , where id is the customer ID in the resources

attribute of both events.

In this example, the customer ID is 9052b6a5-3f09-41d1-b526-ade80104eb79

Customer PEP scan changed

{

 "id": "a5000831-3e01-4231-9ec2-ade8010571c5",

 "eventName": "Core.Customer.PepScan.Changed",

 "status": "Pending",

 "partnerId": "30dee145-b6a2-4058-8dc3-ac4000dee91f",

 "createdAt": "2021-11-22T10:51:53.597-05:00",

 "resources": [

 "core/v1/cm/customers/9052b6a5-3f09-41d1-b526-ade80104eb79"

],

 "details": []

}

Add details to the customer record

Next, you need to add the customer address and phone number. You can also add the

customer email and identification information. Once you add this initial information, if

needed you add more information, such as a mailing address. This tutorial will cover

adding the address and phone number only. These details are considered primary

information. If you add a second address, this is secondary.

Get customer details

{

 "id": "9052b6a5-3f09-41d1-b526-ade80104eb79",

 "cifNumber": "32653745014",

 "classification": "Personal",

 "status": "Active",

 "ofac": "Clear",

 "pepScan": "Clear",

 "name": {

 "firstName": "Peter",

 "lastName": "Griffin",

 "fullName": "Peter Griffin"

 },

 "profile": {

 "regO": false,

 "citizenshipCountryCode": "US",

 "politicallyExposedPerson": false,

 "enableBackupWithholding": false,

 "taxIdType": "Ssn",

 "taxId": "119988776",

 "birthDate": "1953-09-22",

 "riskRating": "Low"

 },

 "createdAt": "2021-11-22T10:49:58.843-05:00",

 "lastModifiedAt": "2021-11-22T10:51:49.5299112-05:00",

 "partnerId": "30dee145-b6a2-4058-8dc3-ac4000dee91f",

 "dueDiligence": {

 "annualIncome": 0

 }

}

1 Use the customer ID returned when you create the customer record to call POST

/core/v1/cm/customers/{id}/addresses to add the customer address. The first

address you add is the primary address.

2 Call POST /core/v1/cm/customers/{id}/phones to add the customer phone

number. The first phone number you add is the primary phone number.

The onboarding process is considered complete when the address and phone records

have been added.

Add customer address

POST /core/v1/cm/customers/9052b6a5-3f09-41d1-b526-ade80104eb79/addresse

{

 "addressType": "Home",

 "classification": "Residential",

 "isPrimary": true,

 "street1": "123 Any St",

 "city": "Anywhere",

 "state": "NY",

 "postalCode": "12345",

 "countryCode": "US"

}

Add customer phone number

 POST /core/v1/cm/customers/9052b6a5-3f09-41d1-b526-ade80104eb79/phones

{

 "isPrimary": true,

 "phoneType": "Mobile",

 "phoneNumber": "2015552345"

}

2.2. Add a beneficial owner

A beneficial owner is a person who owns 25% or more of a business. For regulatory

reasons, you need to create a Beneficial Owner resource in a Business customer record for

each beneficial owner of that business. Each beneficial owner has a personal customer

record that includes a unique customer ID. The ownerCustomerId attribute in the call

described here references the personal customer ID for each beneficial owner. You usually

add beneficial owner resources to the business customer record immediately after

onboarding a business.

In this tutorial, you'll learn how to:

✅ Update a COS customer record with a beneficial owner resource.

The tutorial uses this API endpoint:

If you are a Cross River partner using our to provide

commercial card services (and not to individual cardholders) use this endpoint to

associate individual cardholder customer records with their employer business

customer record.

partner-managed issuing

If you are new to customer management, we recommend you read our

documentation.

The tutorial assumes you have a knowledge of APIs and how they work. Refer to

for more details.

customer

onboarding

API

basics

API Description

POST

/core/v1/cm/customers/{customerId}/benefi

cial-owners

Adds a beneficial owner resource to

customer details.

Before you begin

Make sure you have:

Add beneficial owner resource to record

When you onboard a business customer, you'll need to add any beneficial owners as

resources for the business. Add the beneficial owner to the existing customer record.

If you're using {{BIN}} to provide credit card services for businesses, you need to add each

cardholder as a beneficial owner resource to the business customer record. In that case,

the ownerTitle for each cardholder is Auth User.

In this tutorial, you'll add the CEO of a business as a beneficial owner resource to an

existing business customer record.

To add identification information

1 Call POST /core/v1/cm/customers/{customerId}/beneficial-owners . The

attributes below are required.

API credentials

Customer ID of the business customer record to be updated (only available once the

business is).onboarded

Customer ID of the beneficial owner personal customer record (only available once

the beneficial owner is) or the customer ID of the business customer

record to associate an individual cardholder customer record with their employer

customer record.

onboarded

Beneficial owner title as it appears in their customer record

2 A successful API call returns a JSON response confirming the beneficial owner

added in COS. The id attribute indicates the COS ID of the beneficial owner record.

In the sample below, the ID is 6d441e6d-cd94-4be1-bd30-3890fcad3100. Yours

will be different.

Detail Request

attribute

name

Value used in the

sample request (not

valid)

CR customer ID for the business

customer record being updated

(provided when the customer was

onboarded to COS)

customerI

d

e2a76a89-b5ff-

46f1-bf4d-

494579d7bb71

Beneficial owner CR customer ID

(provided when the beneficial owner was

onboarded to COS)

ownerCusto

merId

83454c7a-e5d3-

4f3a-8633-

11dd49389de2

Title or role of the beneficial owner ownerTitl

e

CEO

IMPORTANT

We highly recommend you include an in your request header

to provide duplicate protection in the event of a failure.

idempotency key

Curl

curl -X POST

--header 'Content-Type: application/json'

--header 'Accept: application/json'

--header 'Authorization: Bearer <token>'

-d '{ \

 "ownerCustomerId": "83454c7a-e5d3-4f3a-8633-11dd49389de2",

 "ownerTitle": "CEO",

}' 'https://sandbox.crbcos.com/Core/v1/cm/customers/e2a76a89-b5ff-46f1-b

3

4

Response sample

{

 "id": "6d441e6d-cd94-4be1-bd30-3890fcad3100",

 "customerId": "e2a76a89-b5ff-46f1-bf4d-494579d7bb71",

 "ownerCustomerId": "83454c7a-e5d3-4f3a-8633-11dd49389de2",

 "status": "Active",

 "ownerTitle": "CEO",

 "partnerId": "0497b3ba-ab2f-4537-8257-4af39d7a5cf7",

 "createdAt": "2024-01-07T08:13:08.464Z",

 "lastModifiedAt": "2024-01-07T08:13:08.464Z",

}

2.3. Add ID details

Update a customer record with physical ID metadata or other identification information.

The tutorial uses this API endpoint:

Before you begin

Make sure you have:

Register relevant webhook events

If you are new to customer management, we recommend you read our

documentation.

The tutorial assumes you have a knowledge of APIs and how they work. Refer to

for more details.

customer

onboarding

API

basics

API Description

POST

/core/v1/cm/customers/{custom

erId}/identifications

Adds unique identification metadata of customer-

identifying documents to customer details.

API credentials

Customer ID (only available once the customer is)onboarded

The necessary details for the identification you are adding to the customer record.

Depending on the type of identification, you might need:

ID serial number

Expiration date

Details of the issuing authority

Other information

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Add ID information to existing record

You might want or need to add a drivers license, passport or other identification to an

existing customer record. If your agreement with Cross River includes {{BIN}}, you need to

add the card processor unique identifier for that customer to their COS record.

In this tutorial, you'll add a driver's license to Peter Griffin's customer record.

1 Call POST /core/v1/cm/customers/{customerId}/identifications . The attributes

below are required. A full list of attributes is found here.

register

Detail Request

attribute

name

Value to use in the

request

Cross River customer ID (provided

when the customer was onboarded

to COS)

customerId ID from the

tutorial

onboard a

customer

True if the ID is the primary ID for this

customer. Otherwise false.

isPrimary true

License ID number idNumber 123 456 789

ID type idType DriversLicense

License Issue date issuedDate 2022-07-15

License Expiration date expDate 2029-07-14

License Issuing authority issuingAuth

ority

New York DMV

License Issuing country code issuingCoun

tryCode

US

IMPORTANT

We highly recommend you include an in your request header

to provide duplicate protection in the event of a failure.

idempotency key

2 A successful API call returns a JSON response confirming the identification details

added in COS. The id attribute indicates the COS ID of that specific identification

item. In the sample below, the ID is 6d3add34-0a1e-4a4e-9c7f-b00a0091e308.

Yours will be different.

Sample request

curl -X POST

--header 'Content-Type: application/json'

--header 'Accept: application/json'

--header 'Authorization: Bearer <token>'

-d '{ \

 "isPrimary": true,

 "idNumber": "123 456 789",

 "idType": "DriversLicense",

 "issuedDate": "2022-07-15",

 "expDate": "2029-07-14",

 "verifiedDate": "2023-05-21",

 "issuingAuthority": "NY DMV",

 "issuingStateOrProvince": "NY",

 "issuingCountryCode": "US",

}' 'https://sandbox.crbcos.com/Core/v1/cm/customers/b71cf966-7896-40a0-8

3 Response sample

{

 "id": "6d3add34-0a1e-4a4e-9c7f-b00a0091e308",

 "customerId": "b71cf966-7896-40a0-88c5-af5g0138fc8c",

 "isPrimary": true,

 "idNumber": "123 456 789",

 "status": "Active",

 "idType": "DriversLicense",

 "issuedDate": "2022-07-15",

 "expDate": "2029-07-14",

 "issuingAuthority": "NY DMV",

 "issuingStateOrProvince": "NY",

 "issuingCountryCode": "US",

 "createdAt": "2023-05-22T04:51:09.4656083-04:00",

 "lastModifiedAt": "2023-05-22T04:51:09.4656083-04:00",

 "partnerId": "cd9c12f4-7691-424a-b38b-af5b0134c611"

}

IMPORTANT

It's up to you to keep this information up to date.

3. Accounts

Our accounts tutorials explain how to use our APIs to:

: Create a deposit account.Open an account

: Create a subledger (virtual account).Open a subledger

: Withdraw funds from a certificate of deposit before it

reaches maturity.

Withdraw CD funds early

3.1. Open an account

CR provides a number of different types of accounts, including check and savings,

Certificates of Deposit (CDs or time deposit accounts), and more.

To open any kind of account you must have a valid product ID for the type of account you

want to open, and a customer ID (onboarded customer record ID) for the account holder.

Note that the account holder must have at least one address and phone number in their

customer record, and their OFAC status must be Clear. In addition, the classification of the

customer must match the configured classification for the product. For example, only

business customers can be added to a business product.

In this tutorial, you'll learn how to:

✅ Open a customer master account

The tutorial uses this API endpoint:

The tutorial uses these webhooks:

Before you begin

If you are new to account management we recommend you read the

documentation before starting this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. Refer to

 for more details.

accounts

API

basics

API Description

POST /core/v1/dda/accounts Opens a deposit account for a customer

Webhook Description

Core.Account.Opened A new account was opened

Make sure you have:

Register the relevant webhook events

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Open an account

This tutorial shows you how to create a deposit account. In this scenario, you'll open an

account for Jana Parker, a customer who you successfully onboarded.

To open an account

1 Call POST /v1/dda/accounts . For this call, some are required.

API credentials

Partner ID

Customer ID (only available once the customer is)onboarded

(defines the type of account being opened)Product ID

IMPORTANT

We highly recommend you include an idempotency key in your request header to

provide duplicate protection in the event of a failure. Read more about

.

idempotency

keys

register

Closed accounts can only be re-opened by the CR Ops teams. To re-open an

account please open a support ticket.

attributes

https://crossriver.service-now.com/csm?id=cos_sandbox_request_form&sys_id=713de878c300b5105d3eafdc7a013184&sysparm_category=df09f2623310c2906b697d934d5c7b4a

2 A successful API call returns a JSON response with the details of the new account.

3 The accountNumber field provides the account number for the new account.

4 In the response example, the account is classified as Personal because the user

configured the product classification as Personal. The account classification always

matches the configured product classification.

POST /core/v1/dda/accounts request

{

 "customerId": "59e3bc15-bbec-4990-88e9-a9a600d3296c",

 "productId": "44015e68-1afb-40fc-9497-abc1014f52da",

 "title": "Jana Parker",

 "statementAddress": {

 "street1": "257 Dalton Groves",

 "city": "Barton City",

 "state": "MI",

 "postalCode": "48705",

 "countryCode": "US"

 }

}

POST /core/v1/dda/accounts response

{

 "customerId": "59e3bc15-bbec-4990-88e9-a9a600d3296c",

 "productId": "44015e68-1afb-40fc-9497-abc1014f52da",

 "title": "Jana Parker",

 "statementAddress": {

 "street1": "257 Dalton Groves",

 "city": "Barton City",

 "state": "MI",

 "postalCode": "48705",

 "countryCode": "US"

 }

}

5 The account status is automatically updated to Active , and is immediately available

for use. This triggers the Core.Account.Opened event.

Core.Account.Opened Event Details

{

 "id": "259cdbca-6a89-4af8-a50e-ada3010fb13f",

 "eventName": "Core.Account.Opened",

 "status": "Pending",

 "partnerId": "e6c3824a-377f-44d5-a2f6-a9a600c9b37e",

 "createdAt": "2021-01-26T09:48:10.1011462-05:00",

 "resources": [

 "core/v1/dda/accounts/2235223803"

],

 "details": []

}

3.2. Open a subledger

Subledgers can be under any master account, such as a checking or savings

account.

The only information required to open a subledger is the master account number and Title

field. The Title is typically set to the name of the partner. Subledgers also support a

beneficiary profile for storing additional data such as the name and address associated

with the subledger. Your Integration manager will assist you with any questions related to

the data used to populate these fields, as they can vary by use case and program.

Once opened, the subledger is ready within a few seconds.

opened

Curl

POST /core/v1/dda/subaccounts

{

 "masterAccountNumber": "2001231234",

 "title": "Acme Co",

 "beneficiary": {

 "referenceId": "ABC789",

 "entityName": "Acme Co",

 "streetAddress1": "400 Business Street",

 "streetAddress2": "Suite 123",

 "city": "New York",

 "state": "NY",

 "postalCode": "10025",

 "countryCode": "US",

 "phoneNumber": "2015551234",

 "emailAddress": "acme@test.com",

 "notes": "Testing 123"

 }

}

3.3. Withdraw CD funds early

In this tutorial, you'll learn how to:

✅ Request early withdrawal

✅ Determine how much to withdraw from the account after the penalty fee is deducted

The tutorial uses these endpoints:

The tutorial uses these webhooks:

Before you begin

Make sure you have:

This tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see .

Learn more about .

API basics

CDs

API Description

POST

/core/v1/dda/accounts/{accountNumber}/ti

me-deposit/early-withdraw

This endpoint requests early withdrawal

from a time deposit account

GET /core/v1/accounts/{accountNumber} This endpoint queries a specific

account for information about it

Webhook Description

Core.TimeDeposit.With

drawn

Shows information about the account the early withdrawal

request was made to

API credentials

1 Register relevant webhook events
To receive the webhook events for this tutorial both partner accounts need to

 each specific webhook event type. Once you are registered, the event

objects are sent to the registered URLs.

The event object contains a list of resource identifiers used to download details on

each event.

2 Request time deposit early withdrawal
Before an account holder can actually withdraw funds from a time account that

hasn't reached maturity, you have to make a request (for the account holder) to make

that early withdrawal. In the request you also indicate if the withdrawal will trigger a

penalty fee or not. Cross River charges a penalty fee for early withdrawal, although in

some cases it can be waived. For example, Cross River time deposit accounts have

no provisions for partial withdrawals. However, in certain circumstances, an account

holder can be allowed to make an early withdrawal of the money in the account

without penalty, which is similar to a partial withdrawal.

Note that a request for early withdrawal does not remove funds from the account.

That is a separate call.

In this tutorial, you will request an early withdrawal with a penalty fee.

To request early withdrawal

Call POST /v1/dda/accounts/{accountNumber}/time-deposit/early-withdraw . For

this call, some/all are required.

Set the waivePenaltyFee attribute to false.

Account number

register

attributes

A successful API call returns a JSON response with the details of account, including

the total funds to be withdrawn and the amount of penalty fee charged. In our

example, the total deposit amount is 1,000,000.00. The penalty fee amount is

4,109.59.

Curl

): https://sandbox.crbcos.com/core/v1/dda/accounts/2434508988/time-depos

{

 "waivePenaltyFee": false

}

JSON

{

 "timeDeposit": {

 "masterAccountNumber": "2434508988",

 "status": "EarlyWithdrawal",

 "minFundingAmount": 50000000,

 "maxFundingAmount": 1000000000,

 "autoClose": true,

 "allowBumpUp": true,

 "waivePenaltyFee": false,

 "fundingDays": 2,

 "gracePeriodDays": 2,

 "currentRate": 0,

 "maturityMonths": 12,

 "rates": [

 {

 "months": 6,

 "rate": 5

 },

 {

 "months": 6,

 "rate": 2.5

 }

],

 "penalties": [

 {

 "months": 3,

 "feeDays": 30

 },

 {

 "months": 9,

 "feeDays": 90

 }

],

 "fundingExpDate": "2023-01-17T00:00:00-05:00",

 "fundingDate": "2023-01-12T00:00:00-05:00",

 "startDate": "2023-01-12T00:00:00-05:00",

 "depositAmount": 100000000,

 "depositCurrency": "usd",

 "maturityDate": "2024-01-11T00:00:00-05:00",

 "earlyWithdrawnAt": "2023-03-08T09:57:00.005123-05:00",

 "rolloverDate": "2024-01-16T00:00:00-05:00",

 "createdAt": "2023-01-12T16:45:45.96-05:00",

 "productId": "3c4e1c34-3544-4236-93a5-af110157167c",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "lastModifiedAt": "2023-03-08T09:57:00.0208451-05:00"

To see amount available

 },

 "penaltyAccountNumber": "20020020028",

 "penaltyFeeAmount": 410959

}

1. Call GET /core/v1/accounts/{accountNumber} to see the balance that

remains in the account after deducting the penalty. This is the sum you will

withdraw. You must transfer the entire amount. Transfer the funds as you would

any money transfer.

2. Withdrawal of the funds triggers the Core.TimeDeposit.Withdrawn webhook

event.

Core.TimeDeposit.Withdrawn webhook event

{

 "id": "90cef2a8-f3e1-41ff-9394-afbf00f8a406",

 "eventName": "Core.TimeDeposit.Withdrawn",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-03-08T10:05:16.423-05:00",

 "resources": [

 "core/v1/dda/accounts/2434508988/time-deposit"

],

 "details": [

 {

 "masterAccountNumber": "2434508988",

 "status": "EarlyWithdrawal",

 "depositAmount": "100023362",

 "maturityDate": "3/14/2023",

 "rolloverDate": "3/19/2023",

 "currentRate": "0.0"

 }

]

}

4. Cards

Our cards tutorials explain how to use our APIs to:

: Create and order a new card.Create a card

: Change the card status to Active. Activate a card

: Test the system with our card simulation endpoints. Simulate card management

4.1. Create a card

In this tutorial, you'll learn how to:

✅ Create and order a new card

The tutorial uses this API endpoint:

The tutorial uses these webhooks.

Before you begin

Make sure you have:

Register relevant webhook events

If you are new to card issuing we recommend you read the concept pages

before starting this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see .

Cards

API basics

API Description

POST /cardmanagement/v1/cards Requests creation of a new debit card

Webhook Description

Cards.Card.Created Debit card created

API credentials

Cardholder's account number

Customer ID (you get this when you create a customer)

Configuration ID

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Order a new card

In this tutorial you will learn how to order/create a new debit card by creating a card for

John Smith.

1 Call POST /cardmanagement/v1/cards . For this call, some are required.

register

attributes

2 A successful API call returns a JSON response with the details of the new card. The

card status will be unactivated until you activate the card. The id is the card ID, in

this example 8c6a53e0-83ad-4b76-b446-b300006a3e6a which you need to

.

Sample create a card

curl --location 'https://sandbox.crbcos.com/cardmanagement/v1/cards' \

--header 'Idempotency-key: b06ab5cc-553a-4fe4-ad78-751b5ff81f0e' \

--data-raw '{

 "accountNumber": "158560897007",

 "customerId": "e2599a17-d1e2-476c-9672-b2ff008fa575",

 "configurationId": "b2251a28-c218-4e2e-a787-b2f700ef0ecd",

 "firstName": "Daly",

 "lastName": "Khol",

 "phone": {

 "phoneType": "Home",

 "phoneNumber": "7185551234"

 },

 "emailAddress": "dkhol@gmail.com",

 "shippingAddress": {

 "street1": "1 Roshar Ave",

 "city": "Roshar",

 "state": "NY",

 "postalCode": "10001",

 "countryCode": "US"

 },

 "billingAddress": {

 "street1": "1 Roshar Ave",

 "city": "Roshar",

 "state": "NY",

 "postalCode": "10001",

 "countryCode": "US"

 },

 "nameOnCard": "Daly Khol",

 "shippingType": "Normal",

 "clientIdentifier": "b06ab5cc-553a-4fe4-ad78-751b5ff81f00"

}

activate the card

Sample order a card response

{

 "id": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "productId": "57146944-b145-4326-884d-b2f700ecf688",

 "partnerId": "19222b81-0e1e-452d-a842-b2f1011c16f3",

 "accountNumber": "158560897007",

 "status": "Unactivated",

 "statusReasonCode": "NotSet",

 "processorCardStatus": "I",

 "firstName": "Daly",

 "lastName": "Khol",

 "shippingAddress": {

 "street1": "1 Roshar Ave",

 "city": "Roshar",

 "state": "NY",

 "postalCode": "10001",

 "countryCode": "US"

 },

 "billingAddress": {

 "street1": "1 Roshar Ave",

 "city": "Roshar",

 "state": "NY",

 "postalCode": "10001",

 "countryCode": "US"

 },

 "phone": {

 "phoneType": "Home",

 "phoneNumber": "7185551234"

 },

 "emailAddress": "dkhol@gmail.com",

 "nameOnCard": "Daly Khol",

 "isPinSet": false,

 "adminBlocked": false,

 "fraudSuspect": false,

 "configurationId": "b2251a28-c218-4e2e-a787-b2f700ef0ecd",

 "category": "Debit",

 "paymentInstrument": "PhysicalCombo",

 "processor": "i2c",

 "shippingType": "Normal",

 "orderStatus": "OrderPending",

 "replacementStatus": "NotApplicable",

 "customerId": "e2599a17-d1e2-476c-9672-b2ff008fa575",

 "clientIdentifier": "b06ab5cc-553a-4fe4-ad78-751b5ff81f00",

 "createdAt": "2025-06-18T02:26:49.6169047-04:00",

3 When the card is generated at the processor, the Cards.Card.created webhook

event fires.

"lastModifiedAt": "2025 06 18T02:26:49 6169047 04:00"

Sample Cards.Card.Created event

{

 "id": "cea6c5b5-13e7-4c2f-ba75-afce01110fe5",

 "eventName": "Cards.Card.Created",

 "status": "Pending",

 "partnerId": "cd9c12f4-7691-424a-b38b-af5b0134c611",

 "createdAt": "2023-02-13T04:42:29.4869172-05:00",

 "resources": [

 "cardmanagement/v1/cards/8c6a53e0-83ad-4b76-b446-b300006a3e6a"

],

 "details": [

 {

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "status": "Unactivated",

 "statusReasonCode": "NotSet"

 }

]

}

4.2. Activate a card

In this tutorial, you'll learn how to:

✅ Activate a debit card using the card ID

The tutorial uses this API endpoint:

The tutorial uses this webhook event:

Before you begin

Make sure you have:

Register relevant webhook events

If you are new to card issuing we recommend you read the concept pages

before starting this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see .

Cards

API basics

API Description

POST /cardmanagement/v1/cards/{id}/activate Activates the card using the card ID

Webhook Description

Cards.Card.Activated Debit card activated

API credentials

Card ID from when you created the card

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Activate the card

Activate the card you created in the tutorial.

1 Call POST /cardmanagement/v1/cards/{id}/activate . Set the id attribute to the

card ID. In the sample below the ID is 8c6a53e0-83ad-4b76-b446-b300006a3e6a.

2 A successful API call returns a JSON response with the details of the card. The card

status is now Active. The OrderStatus is Completed.

register

create a card

Sample activate card request

curl --location --globoff --request POST 'https://sandbox.crbcos.com/car

--header 'Idempotency-key: a5b1b129-421e-441b-9661-ec1c0396965e' \

--data ''

Sample activate card response

{

 "id": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "productId": "57146944-b145-4326-884d-b2f700ecf688",

 "partnerId": "19222b81-0e1e-452d-a842-b2f1011c16f3",

 "processorCardId": "827277613081398",

 "accountNumber": "158560897007",

 "status": "Active",

 "statusReasonCode": "NotSet",

 "processorCardStatus": "B",

 "firstName": "Daly",

 "lastName": "Khol",

 "shippingAddress": {

 "street1": "1 Roshar Ave",

 "city": "Roshar",

 "state": "NY",

 "postalCode": "10001",

 "countryCode": "US"

 },

 "billingAddress": {

 "street1": "1 Roshar Ave",

 "city": "Roshar",

 "state": "NY",

 "postalCode": "10001",

 "countryCode": "US"

 },

 "phone": {

 "phoneType": "Home",

 "phoneNumber": "7185551234"

 },

 "emailAddress": "dkhol@gmail.com",

 "nameOnCard": "Daly Khol",

 "panLastFour": "4558",

 "isPinSet": false,

 "expirationDate": "2028-06-18",

 "adminBlocked": false,

 "fraudSuspect": false,

 "configurationId": "b2251a28-c218-4e2e-a787-b2f700ef0ecd",

 "category": "Debit",

 "paymentInstrument": "PhysicalCombo",

 "processor": "i2c",

 "shippingType": "Normal",

 "orderStatus": "Completed",

 "replacementStatus": "NotApplicable",

 "customerId": "e2599a17-d1e2-476c-9672-b2ff008fa575",

 "clientIdentifier": "b06ab5cc-553a-4fe4-ad78-751b5ff81f00",

3 When the card status changes to Active , the Cards.Card.Activated webhook

event fires.

 "processorCustomerId": "0CIF7L2973U98WT4E652",

 "createdAt": "2025-06-18T02:26:49.617-04:00",

 "initialActivation": "2025-06-18T00:00:00-04:00",

 "activatedAt": "2025-06-18T02:27:58.8133927-04:00",

 "lastModifiedAt": "2025-06-18T02:27:58.8133927-04:00"

}

Cards.Card.Activated webhook event

{

 "id": "95ac33ca-3d7f-49aa-bfc2-afce01113310",

 "eventName": "Cards.Card.Activated",

 "status": "Pending",

 "partnerId": "19222b81-0e1e-452d-a842-b2f1011c16f3",

 "createdAt": "2023-02-13T04:44:31.282287-05:00",

 "resources": [

 "cardmanagement/v1/cards/8c6a53e0-83ad-4b76-b446-b300006a3e6a"

],

 "details": [

 {

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "status": "Active",

 "statusReasonCode": "NotSet"

 }

]

}

4.3. Simulate card management

In this tutorial, you'll learn how to:

✅ Simulate these card management actions:

The tutorial uses these API endpoints:

Clearing

Reversal

Incremental transaction

Single message clearing

Single message reversal

If you are new to card issuing we recommend you read the concept pages

before starting this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see .

Cards

API basics

Before you begin

Make sure you have:

Register relevant webhook events

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Simulate card management

API Description

POST

/v1/simulate/authorization

Simulates merchant authorization

POST /v1/simulate/clearing Simulates replacement of a memo post with a core

transaction

POST /v1/simulate/reversal Simulates reversal of an authorization

POST

/v1/simulate/incremental

Simulates an incremental transaction reflected in the

deposit account activity

POST /v1/simulate/single-

message-clearing

Simulations the message type for cardholder verification

to authorize and clear a transaction

POST /v1/simulate/single-

message-reversal

Simulates a single message clearing transaction for

which you can create a reversal transaction

API credentials

Client ID

register

The simulate endpoints within Card Management allow you to simulate most of the

transaction scenarios you would experience in a live environment.

To simulate authorization

Call . This endpoint simulates a merchant authorization

that affects the available balance on the deposit account.

The response includes the retrievalReferenceNumber and the cardId . You need these

values to replace the memo post with a core transaction to post the activity record to the

account, using the endpoint POST /v1/simulate/clearing as explained below.

To simulate clearing

POST /v1/simulate/authorization

Simulate authorization request

curl --location 'https://sandbox.crbcos.com/cardmanagement/v1/simulate/author

--data '{

 "amount": 1999,

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "merchantCountryCode": "US",

 "merchantName": "StreamFlix",

 "merchantStreet": "123 Any St",

 "merchantCity": "Anywhere",

 "merchantState": "NY",

 "merchantPostalCode": "10001",

 "cardNetwork": "Visa",

 "additionalAmounts": [],

 "processingCode": "BillPayment"

}'

Simulate authorization response

{

 "retrievalReferenceNumber": "644371423186",

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a"

}

In a real transaction, when the authorization request is made, a memo post reflects the

account and impacts the available balance. However, the memo post remains until the

clearing endpoint is called. Calling the endpoint replaces

the memo post with a core transaction to post the activity record to the account. In this

simulation, authorization is not complete and the transaction does not post on the account

until the simulate/clearing endpoint is called using the retrievalReferenceNumber

and cardId .

To simulate reversal

This endpoint is used to reverse an existing authorization using the

retrievalReferenceNumber returned in the response to the

endpoint. This reverses the original authorization placed on the account and removes it

from the deposit account activity. The amount in this request can be any value and does

not have to be the same amount as the original clearing transaction, which allows for a

partial amount reversal.

To simulate a incremental transaction

POST /v1/simulate/clearing

Simulate clearing request

curl --location 'https://sandbox.crbcos.com/cardmanagement/v1/simulate/cleari

--data '{

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "retrievalReferenceNumber": "644371423186",

 "processingCode": "BillPayment"

}'

POST /v1/simulate/reversal

Simulate reversal request

curl --location 'https://sandbox.crbcos.com/cardmanagement/v1/simulate/revers

--data '{

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "retrievalReferenceNumber": "654492282074",

 "amount": "123"

}'

This endpoint, used with the retrievalReferenceNumber returned by the

endpoint, creates an incremental transaction reflected in the

deposit account activity. An example of an incremental transaction is when a hotel adds an

additional charge for an item charged to your room.

To simulate single message clearing

A single message is a message type that uses real-time verification and requires the

cardholder to enter their PIN to authorize and clear their transaction. An example of a

transaction that uses the enpoint is an ATM

withdrawal.

POST

/v1/simulate/incremental

Simulate incremental request

curl --location 'https://sandbox.crbcos.com/cardmanagement/v1/simulate/increm

--data '{

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "retrievalReferenceNumber": "654492282074",

 "amount": "123"

}'

POST /v1/simulate/single-message-clearing

To simulate single message reversal

This endpoint allows you to create a reversal transaction to a single message clearing

transaction. For example, use the endpoint

to simulate a purchase and then simulate a return with the single-message-reversal .

Simulate single message clearing request

curl --location 'https://sandbox.crbcos.com/cardmanagement/v1/simulate/single

--data '{

 "processingCode": "Purchase",

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "amount": "22",

 "merchantCountryCode": "US",

 "merchantName": "StreamFlix",

 "merchantStreet": "123 Any St",

 "merchantCity": "Anywhere",

 "merchantState": "NY",

 "merchantPostalCode": "10001",

 "cardNetwork": "Visa",

 "additionalAmounts": [

 {

 "amountType": "Unknown",

 "accountType": "NotSpecified",

 "amount": "10"

 }

]

}

'

POST /v1/simulate/single-message-reversal

Simulate single message reversal request

curl --location 'https://sandbox.crbcos.com/cardmanagement/v1/simulate/single

--data '{

 "amount": "22",

 "processingCode": "Purchase",

 "cardId": "8c6a53e0-83ad-4b76-b446-b300006a3e6a",

 "merchantCountryCode": "US",

 "merchantName": "StreamFlix",

 "merchantStreet": "123 Any St",

 "merchantCity": "Anywhere",

 "merchantState": "NY",

 "merchantPostalCode": "10001",

 "cardNetwork": "Visa",

 "additionalAmounts": [

 {

 "amountType": "Unknown",

 "accountType": "NotSpecified",

 "amount": "10"

 }

]

}

'

5. Instant payments

Our cards tutorials explain how to use our APIs to:

: Originate a payment using RTP, FedNow, CRNow or

network interoperability.

Send an instant payment

: Find out the instant payment services a specific financial institution

supports, per network (RTP or FedNow).

Get service info

: Set your own custom expiration time for retrying a payment

when a receiving financial institution is down.

Set payment expiration

: Each instant payment network has specific requirements for

reporting suspected fraud, with its own criteria for what qualifies as reportable fraud

Fraud reporting

5.1. Send an instant payment

In this tutorial, you'll learn how to

✅ Originate an instant payment credit transfer from your master account.

✅ Simulate a rejected credit transfer.

Before you begin

Make sure you have:

You should be familiar with these terms:

This tutorial uses this API endpoint:

If you are new to instant payments, check out the overview.

This tutorial assumes familiarity with APIs. For more information, visit .

instant payments

API basics

API credentials

Your partner ID

Your master account number

Financial institution

(FI)

The bank or credit union facilitating the transfer of funds

between parties

Debtor The account initiating and sending a payment through the Instant

Payments network

Creditor The account receiving funds through the Instant Payments

network

POST

/rtp/v1/payments

Transfers funds between banks in real time via an Instant

Payments network

Webhooks used in this tutorial:

Register for relevant webhook events

Originate a credit transfer

Instant payment credit transfers allow funds to move from your account to the recipient's

account in real time. Transfers can originate from master accounts or subledgers.

In this tutorial, you are the debtor. You will send an outbound credit transfer from your

master account to the creditor using a specified network platform.

Possible Outcomes:

Rtp.Payment.Sen

t

Payment successfully sent to the receiving institution; funds are

available in the recipient’s account

Rtp.Payment.Rec

eived

Payment received and posted to an account in COS

Rtp.Payment.Rej

ected

Payment rejected by the receiving institution or Instant Payments

network.

To receive webhook events, for each webhook event type. Events are sent to

the URLs you register.

register

The event object includes resource identifiers that provide details on each event.

The debtor sends the payment, and the creditor receives it.

Cross River supports three network platforms:

RTP® via The Clearing House (TCH)

FedNow®

CRNow

Accepted Transfer: Funds are posted to the recipient’s account.

Status: ACTC (Accepted)

Initiating a credit transfer

Rejected Transfer: Payment is rejected by the creditor FI or the network. No funds

are transferred.

Status: RJCT (Rejected)

No Response: The transfer times out, resulting in rejection.

Status: RJCT (Rejected)

Accepted Without Posting: The payment is accepted but funds are not immediately

posted. The creditor FI can accept or reject the transfer within 24 hours.

Status: ACWP (Accepted Without Posting)

Cross River cannot confirm how the receiving FI displays payment details. Contact

the recipient FI directly for specifics on how the payment will appear.

IMPORTANT

We strongly recommend that you include an in the request header

to prevent duplicate payments in case of a failure.

idempotency key

Use POST /rtp/v1/payments to initiate a credit transfer.

Some attributes are required for the call. Refer to the full list of .attributes

In this tutorial, you will send $175 to C. Brown.

Amounts in API calls and responses are written without decimal points (e.g., $175 is

written as 17500).

A successful API call returns a JSON response containing the details of the originated

credit transfer.

Example request: originate a credit transfer

POST /Rtp/v1/payments

{

 "accountNumber": "2553179843",

 "amount": 17500,

 "creditor": {

 "routingNumber": "011000138",

 "accountNumber": "456789000",

 "name": "C Brown",

 "addressStreetName": "Main St",

 "addressBuildingNumber": "34",

 "addressCity": "New York",

 "addressState": "NY",

 "addressPostalCode": "12345",

 "addressCountry": "US"

 },

 "purpose": "gift money"

}

When a credit transfer (pacs.008) is sent to the instant payments network, the

Rtp.Payment.Sent webhook fires. The event body includes the payment ID in the details

section (e.g., 7b5f4bfb-8595-452b-914e-ad9400f7b8e3).

Payment status webhooks

These webhooks provide real-time updates on the status of your credit transfer.

Sample Rtp.Payment.Sent event

{

 "id": "7af80bc3-4f1c-4842-b60e-ad9400fb59db",

 "eventName": "Rtp.Payment.Sent",

 "status": "Pending",

 "partnerId": "bd7a716f-6349-43ef-89cd-aa2200f15977",

 "createdAt": "2021-08-30T11:15:08.623-04:00",

 "resources": [

 "rtp/v1/payments/7b5f4bfb-8595-452b-914e-ad9400f7b8e3"

],

 "details": [

 {

 "paymentId": "7b5f4bfb-8595-452b-914e-ad9400f7b8e3",

 "paymentType": "CreditTransfer",

 "resultCode": "OK",

 "resultAdditionalInfo": null,

 "coreTransactionId": "3e04e9b9-e80f-4f5f-9a0b-b04a011d23df",

 "memoPostId": "4820a916-f062-49ad-9519-b04a011d2372",

 "accountNumber": "2553179843",

 "postingCode": "OK",

 "rtpTransactionStatus": "ACTC",

 "purpose": null,

 "awaitingResponse": "False",

 "referencedPaymentId": null

 }

]

}

Rtp.Payment.Sent – Confirms the payment was sent.

Rtp.Payment.Received – Confirms the payment was received and posted.

Simulate rejected credit transfers

You can simulate a rejected response from the creditor:

The response example shows a status of Rejected on line 13.

1. Call POST /rtp/v1/payments (same as initiating a credit transfer).

2. Add reject: before the creditor’s name (see line 9 in the request example).

Example request: rejected credit transfer

POST /v1/payments

{

 "accountNumber": "2553179843",

 "amount": 15000,

 "creditor": {

 "routingNumber": "011000138",

 "accountNumber": "456789000",

 "name": "reject:Cleveland Brown",

 "addressStreetName": "Main St",

 "addressBuildingNumber": "34",

 "addressCity": "New York",

 "addressState": "NY",

 "addressPostalCode": "00093",

 "addressCountry": "US"

 },

 "purpose": "gift money"

}

Example response: rejected credit transfer

{

 "id": "7b5f4bfb-8595-452b-914e-ad9400f7b8e3",

 "originalPaymentId": "7b5f4bfb-8595-452b-914e-ad9400f7b8e3",

 "referenceId": "R242O0354Y055",

 "accountNumber": "2553179843",

 "amount": 15000,

 "operatorCoreTransactionId": "2da7c99c-5804-4757-98c1-ad9400fa6c2c",

 "memoPostId": "7b5f4bfb-8595-452b-914e-ad9400f7b8e3",

 "memoPostRemovedAt": "2021-08-30T11:14:44.973-04:00",

 "direction": "Outbound",

 "status": "Rejected",

 "paymentType": "CreditTransfer",

 "source": "Api",

 "transactionAccountContext": "Rejected",

 "rtpTransactionStatus": "RJCT",

 "debtor": {

 "routingNumber": "021214891",

 "accountNumber": "2553179843",

 "name": "P Griffin",

 "addressStreetName": "Main Street",

 "addressBuildingNumber": "31",

 "addressCity": "New York",

 "addressState": "NY",

 "addressPostalCode": "00093",

 "addressCountry": "US"

 },

 "creditor": {

 "routingNumber": "011000138",

 "accountNumber": "456789000",

 "name": "C Brown",

 "addressStreetName": "Main St",

 "addressBuildingNumber": "34",

 "addressCity": "New York",

 "addressState": "NY",

 "addressPostalCode": "00093",

 "addressCountry": "US"

 },

 "network": {

 "messageDefId": "pacs.008.001.08",

 "businessMessageId": "B20210830021214273T1BQPZ97287285414",

 "messageId": "M20210830021214273T1BEML46024873029",

 "createdAt": "2021-08-30T11:01:55.74-04:00",

 "numberOfTransactions": 1,

 "interbankSettlementAmount": 15000,

 "currency": "USD",

The Rtp.Payment.Rejected event is triggered when a credit transfer is rejected.

 "interbankSettlementDate": "2021-08-30",

 "settlementMethod": "CLRG",

 "clearingSystemCode": "TCH",

 "instructionId": "20210830021214273T1B4S0534677157734",

 "endToEndId": "9a2638dc8cbe48f18d8cad9400f7b8e3",

 "transactionId": "20210830021214273T1B4S0534677157734",

 "clearingSystemRef": "001",

 "fromParticipantId": "021214273T1",

 "toParticipantId": "990000001S1",

 "instructingRoutingNumber": "021214891",

 "instructedRoutingNumber": "011000138",

 "headerCreationDate": "2021-08-30T11:11:45.373-04:00",

 "messageCreationDateTime": "2021-08-30T11:01:55.74-04:00"

 },

 "confirmedStatus": {

 "messageStatusReportId": "2da7c99c-5804-4757-98c1-ad9400fa6c2c",

 "acceptedDateTime": "2021-08-30T11:11:45.4-04:00",

 "transactionStatus": "ACTC"

 },

 "serviceLevelCode": "SDVA",

 "localInstrumentProprietary": "STANDARD",

 "categoryPurpose": "CONSUMER",

 "currency": "USD",

 "chargeBearer": "SLEV",

 "purpose": "gift money",

 "wasRefunded": false,

 "wasPaid": false,

 "createdAt": "2021-08-30T11:01:55.74-04:00",

 "completedAt": "2021-08-30T11:14:45.05-04:00",

 "processingStartedAt": "2021-08-30T11:11:45.247-04:00",

 "postingCode": "OK",

 "productId": "13362d99-f04e-455b-9363-abc10151c27c",

 "partnerId": "bd7a716f-6349-43ef-89cd-aa2200f15977",

 "lastModifiedAt": "2021-08-30T11:14:45.0505825-04:00",

 "sentAt": "2021-08-30T11:11:45.3733333-04:00",

 "sendAttemptCount": 1,

 "result": {

 "code": "OK"

 },

 "discounts": [],

 "awaitingResponse": false

}

The details object in the event contains the payment ID from the response body

(e.g., 7b5f4bfb-8595-452b-914e-ad9400f7b8e3).

The resultCode in the details object provides the rejection reason.

Example: AC06 – Account is blocked.

Sample Rtp.Payment.Rejected event

{

 "id": "06afb069-dc90-48ea-b642-b04a0126580f",

 "eventName": "Rtp.Payment.Rejected",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-07-25T13:51:40.417-04:00",

 "resources": [

 "rtp/v1/payments/7b5f4bfb-8595-452b-914e-ad9400f7b8e3"

],

 "details": [

 {

 "paymentId": "7b5f4bfb-8595-452b-914e-ad9400f7b8e3",

 "paymentType": "CreditTransfer",

 "resultCode": "AC06",

 "resultAdditionalInfo": null,

 "postingCode": "RES",

 "rtpTransactionStatus": null,

 "purpose": null,

 "referencedPaymentId": null

 }

]

}

5.2. Get service info

In this tutorial, you'll learn how to:

✅ Identify which Instant Payments receive services are available to creditor banks through

RTP® via TCH or FedNow®.

Before you begin

Make sure you have:

API endpoints used in this tutorial:

Access the directory

You’ll check the available services for JP Morgan Chase Bank. The API call returns a list of

service codes. If the bank supports both RTP via TCH and FedNow, codes for each

network will be returned.

If you are new to instant payments, check out the overview.

This tutorial assumes familiarity with APIs. For more information, visit .

instant payments

API basics

API credentials

API Description

GET /rtp/v1/directory Returns available Instant Payments receive services

For FedNow, banks must register each routing transit number (RTN) individually.

Banks may have partial RTN registration.

Call GET /rtp/v1/directory?{queryParam}={queryParamValue} .

Enter routing number 021000021 as either routingNumber or

institutionRoutingNumber to retrieve results for the financial institution.

A successful API call returns a JSON response listing the supported Instant Payments

services for routing number 021000021, associated with JP Morgan Chase Bank.

Include at least one query parameter to filter and control the data returned.

filter.name The official name of the financial institution (FI)

filter.routingNumber The routing number of the recipient account (Best practice:

Filter by this value for accuracy)

filter.participantId The participant ID of the FI

filter.institutionRou

tingNumber

The routing number of the FI

Sample query using routing number

curl -X GET /rtp/v1/directory

'https://sandbox.crbcos.com/Rtp/v1/directory?filter.routingNumber=021000021'

The receiveServices object contains the service codes.

The networkPlatform attribute specifies the Instant Payments network (e.g., RTP®

or FedNow®).

If the bank participates in both networks, the response includes a separate list of

services for each.

Sample directory response with both networks

{

 "networkPlatform": "TCH",

 "routingNumber": "021000021",

 "participantId": "200000020T1",

 "name": "JPMorgan Chase",

 "institutionRoutingNumber": "200000021",

 "institutionName": "JPMorgan Chase",

 "receiveServices": [

 "ACK",

 "CRDT",

 "RFI",

 "RFIR",

 "RFP",

 "RFPR",

 "RFRF",

 "RFRFR",

 "RMT"

],

 "receivingConnection": "JPMC",

 "participantActivationDate": "11/13/2017 12:00:00 AM",

 "extractionDateTime": "9/29/2022 7:00:00 AM",

 "lastModifiedAt": "2022-09-29T14:23:01.9180766-04:00",

 "networkPlatform": "TCH",

 "onlineStatus": "SignedOn",

 "onlineStatusChangedAt": "2022-09-15T12:22:04.9180766-04:00"

 },

 {

 "routingNumber": "021000021",

 "name": "JPMORGAN CHASE BANK, NA",

 "receiveServices": [

 "CTSR"

],

 "lastModifiedAt": "2022-09-29T14:23:01.9180766-04:00",

 "networkPlatform": "FedNow",

 "onlineStatus": "SignedOn",

 "onlineStatusChangedAt": "2022-09-15T12:22:04.9180766-04:00"

 }

Available Instant Payments services for TCH

Available Instant Payments services for FedNow

Even if a financial institution lists a specific service, it does not guarantee that the

creditor or debtor account at that institution is eligible for it.

Code Description Details

CRDT Credit Transfer Permits receipt of Credit Transfer (pacs.008)

RFP Request for Payment Permits receipt of Request for Payment

(pain.013)

ACK Payment

Acknowledgement

Permits receipt of Payment

Acknowledgement (camt.035)

RMT Remittance Advice Permits receipt of Remittance Advice

(remt.001)

RFI Request for Information Permits receipt of Request for Information

(camt.026)

RFRF Request for Return of

Funds

Permits receipt of Request for Return of

Funds (camt.056)

RFPR Request for Payment

Response

Permits receipt of Request for Payment

Response (pain.014)

RFIR Request for Information

Response

Permits receipt of Request for Information

Response (camt.028)

RFRFR Request for Return of

Funds Response

Permits receipt of Request for Return of

Funds Response (camt.029)

Code Description Details

CTRO Credit Transfer

Receive Only

Indicates a FedNow participant is enabled to receive

but not send customer credit transfer messages.

CTRO Credit Transfer

Receive Send

Indicates a FedNow participant is enabled to send

and receive customer credit transfer messages.

RFPR Request For

Payment Receive

Indicates a FedNow participant is enabled to receive

request for payment messages.

5.3. Set payment expiration

Cross River queues instant payments to be sent later if for some reason the receiving bank

is offline and cannot receive the credit transfer immediately.

In this tutorial, you'll learn how to:

✅ Set an expiration time for how long a payment remains in the queue before being

cancelled

Before you begin

Make sure you have:

The tutorial uses these API endpoints:

The tutorial uses these webhooks:

If you are new to instant payments, check out the overview.

This tutorial assumes familiarity with APIs. For more information, visit .

instant payments

API basics

API credentials

Your partner ID

Your master account number

POST /rtp/v1/payments Transfers funds between banks in real time via an

Instant Payments network

POST

/rtp/v1/payments/{id}/payment

-request/cancel

Cancels a payment request if a credit transfer or

payment request response has not been received.

Register for relevant webhook events

Set queued payment expiration time

Prepare to send an instant payment as described in the tutorial.

Define your expiration time:

If both are provided, the system prioritizes the time in seconds and ignores the date and

time.

Payments have a default queue expiration of 3 days.

If the expiration is reached, Cross River cancels the payment and triggers an

Rtp.Payment.Canceled webhook.

By date and time

Rtp.Payment.Queu

ed

Payment queued for sending when the receiving financial

institution comes back online

Rtp.Payment.Canc

eled

Payment canceled

To receive webhook events, for each webhook event type. Events are sent to

the URLs you register.

register

The event object includes resource identifiers that provide details on each event.

send an instant payment

Set a specific date and time (queuedPaymentExpiresAt)

Define an expiration time in seconds (queuedPaymentExpiresAfterInSeconds)

Use the queuedPaymentExpiresAt attribute in your payment request.

Format: yyyy-mm-ddThh:mm:ss (US Eastern Time).

The value must be a future date and time.

This field is optional.

For reference, the sample request includes this attribute on row 17.

By time in seconds

For reference, the sample request includes this attribute on row 17.

Sample payment request with date and time expiration queuing

POST /v1/payments

{

"accountNumber": "2553179843",

"amount": 15000,

"creditor": {

"routingNumber": "011000138",

"accountNumber": "456789000",

"name": "Cleveland Brown",

"addressStreetName": "Spooner St",

"addressBuildingNumber": "34",

"addressCity": "Quahog",

"addressState": "RI",

"addressPostalCode": "00093",

"addressCountry": "US"

"addressCountry": "US"

},

"queuedPaymentExpiresAt": "2023-02-19T08:22:17.512Z"

}

Use the queuedPaymentExpiresAfterInSeconds attribute in your payment request.

Enter the value in seconds (whole number).

The countdown starts when the payment is queued.

A value of 0 cancels the payment immediately if the RDFI is offline.

This field is optional.

Cancel a queued payment

Cancel a queued payment anytime using the POST /v1/payments/{paymentId}/cancel

endpoint.

Test queuing in sandbox

To simulate offline participants, three participants alternate between online and offline

every 60 minutes.

Sample payment request with queuing expiration in seconds

POST /v1/payments

{

"accountNumber": "2553179843",

"amount": 15000,

"creditor": {

"routingNumber": "011000138",

"accountNumber": "456789000",

"name": "Cleveland Brown",

"addressStreetName": "Spooner St",

"addressBuildingNumber": "34",

"addressCity": "Quahog",

"addressState": "RI",

"addressPostalCode": "00093",

"addressCountry": "US"

"addressCountry": "US"

},

"queuedPaymentExpiresAfterInSeconds": 3600

}

1. Register for the Rtp.Payment.Queued webhook.

2. Submit a payment using one of the following routing numbers:

000000010

000000017

244084264

If the payment isn’t queued, continue submitting until the participant cycles offline.

3. If the participant is offline, the Rtp.Payment.Queued webhook fires, and the

payment status changes to Queued.

4. Once the participant returns online, the payment resumes normal processing.

5.4. Fraud reporting

Each instant payment network has specific requirements for reporting suspected fraud,

with its own criteria for what qualifies as reportable fraud.

You must notify Cross River about any suspected fraudulent transaction.

Reporting procedure

For all instant payment networks, if an activity meets the network's definition of a

fraudulent payment, you must notify Cross River as follows:

1 Send an email to with at least the following

information, per payment network:

iprops.support@crossriver.com

mailto:iprops.support@crossriver.com

FedNow RTP CRNow

A notice that a

occurred over FedNow

Reportable Transfer

A notice that an

 occurred

over RTP

unauthorized

transaction

A notice that a

occurred over CRNow

fraudulent payment

Date of transaction Date of transaction Date of transaction

Payment ID or COS

reference ID

Payment ID or COS

reference ID

Payment ID or COS

reference ID

Amount Amount Amount

Customer name Customer name CRNow customer name

payment was sent

to/from

Other financial institution

that is party to the

transaction

Receiving financial

institution

FraudClassifer model

type code

Party associated with the

Reportable Transfer. Valid

values are:

S: Sender is the

suspected

fraudulent party

R: Receiver is the

suspected

fraudulent party

B: Both Sender and

Receiver are

suspected

fraudulent parties

2 In accordance with the thresholds outlined in the

, send an Incident Report, if warranted, to

. Use the

.

Reporting requirements

Each instant payments network has explicit reporting requirements.

FedNow

The FedNow Service requires participants to report Reportable Transfers sent over the

network. A Reportable Transfer is defined as:

You must ensure compliance with this requirement by reporting any Reportable Transfers

to Cross River, regardless of whether you are the sender or receiver of the transfer.

Incident Report Submission

Summary

unusualactivityreferrals@crossriverbank.com Incident Report form

template

Summary

If a funds transfer made through the FedNow network is later identified as potentially

fraudulent, you as a Cross River partner must report it to Cross River, enabling us to

notify FedNow.

“Any funds transfer completed, in part, through the FedNow Service based on a

payment order sent or received by a FedNow Participant that was authorized by the

sender at the time of submission but was later determined to potentially involve

fraudulent activity. The FedNow Participant must have a good-faith belief that the

transaction resulted from fraudulent activity.”

mailto:unusualactivityreferrals@crossriverbank.com?subject=Incident%20report%20form%20for%20suspicious%20instant%20payment%20reportable%20transfer

FraudClassifer model type codes

The table below presents the various FedNow FraudClassifier model type codes.

Fraud

type

code

Code

name

Fraud

type

Description Notes/examples

FC00 Transact

ion is

not

fraudule

nt

None If a Reportable

Transfer was

previously

reported and is

later determined

not to be the

result of

fraudulent

activity, use FC00

to indicate Not

Fraud.

N/A

FC01 Authoriz

ed party

was

manipul

ated

Product

and

Service

s Fraud

A situation

involving a

transfer of funds

in exchange for a

product or

service,

irrespective of the

nature of the

Examples include rental

scams, travel scams, lottery

scams, tech support scams,

home repair scams, home

alarm scams, free trial scams,

brain booster scams, gold

coin scams, etc. Example:

Paul has been wanting a

Fraud

type

code

Code

name

Fraud

type

Description Notes/examples

relationship

between the two

parties, whereby

the receiver of the

funds does not

deliver the

product or service

or delivers a

grossly inferior

product or service

than advertised or

promised.

puppy and found a great deal

online. For $75, he can get a

chocolate lab puppy,

including delivery. He needs

to send $75 to the information

provided in the ad. Excited

about this great deal, he

sends the money but never

received the puppy.

FC02 Authoriz

ed party

was

manipul

ated

Relation

ship

and

Trust

Fraud

A situation

involving a

transfer of funds

to a trusted party

or an imposter

acting as a trusted

or authorized

party, where there

is no expectation

or promise of

goods or services

in exchange for

the transferred

funds; the

seemingly

trustworthy party

can be an existing

or emerging

relationship or a

party pretending

Examples include IRS

imposter scams, Social

Security imposter scams,

sheriff’s office scams (jury

duty), romance scams,

grandparent scams, utility

scams, fake debt collections,

duplicate payment scams,

etc. Example: Joan developed

a relationship with Fred

online. A day before the first

meeting in person, Fred

asked Joan to send him

$10,000 to get out of serious

trouble. Joan sent the money

to Fred. Fred does not show

up for their meeting and Joan

never hears from him again.

Fraud

type

code

Code

name

Fraud

type

Description Notes/examples

to be an authority

or reputable

company.

FC03 Authoriz

ed party

acted

fraudule

ntly

Embezz

lement

Theft or misuse of

funds legally

placed in one’s

trust or belonging

to one’s employer.

This would include situations

involving agents acting for

others. Example: Tina, the

Treasurer, had the ability to

initiate payments at her

company. Tina instructs the

company’s FIs account to her

personal account.

FC04 Authoriz

ed party

acted

fraudule

ntly

Synthet

ic

Identity

Fraud

(SIF)

The use of a

combination of

personally

identifiable

information (PII)

to fabricate a

person or entity to

commit a

dishonest act for

personal or

financial gain.

Use of a false identification to

create an account with the

intent to commit fraud.

Example: Fred opens a

deposit account under a

fabricated identity. Fred uses

the account to collect

payments from his fraudulent

scheme, wires the amount to

an offshore account, and

leaves the account dormant.

FC05 Authoriz

ed party

acted

fraudule

ntly

False

claim

An intentional lie

or deception to

receive a payment

or avoid a

payment

obligation.

Informing a consumer of a

false situation to obtain funds

(e.g., overdue utility

bill/disconnect;

child/grandchild in prison).

Example: Betsy orders online

and makes the payment

electronically. Days after she

received the goods, she calls

her bank, reports the

Fraud

type

code

Code

name

Fraud

type

Description Notes/examples

purchases as fraudulent, and

seeks a refund.

FC06 Unautho

rized

party

took

over

account

Compro

mised

Credent

ials

Account login

information,

intended only for

an authorized

party is obtained

by an

unauthorized

party.

Account login information

(e.g., ID/password) allows

one to access an account and

is not specific to personal

information, contact

information, etc. Access to

personal information, contact

information, etc. would be

classified under

Impersonated Authorized

Party. Example: Using Greg's

login ID and password, Frank

gains full access to Greg’s

online bank account. Frank

then proceeds to initiate

several transfers through

Greg’s bank and the FedNow

Service from Greg's account

to an account at different

bank.

FC07 Unautho

rized

party

modified

payment

informat

ion

Compro

mised

Credent

ials

Unauthorized

Party has

obtained access

to a payment

instruction “in

process” and

modified it to

redirect funds to

an account they

have access to.

Account login information

(e.g., ID/password) allows

one to access an account and

is not specific to personal

information, contact

information, etc. Access to

personal information, contact

information etc. would be

classified under

Impersonated Authorized

Fraud

type

code

Code

name

Fraud

type

Description Notes/examples

Party Example: Steve set up

an online recurring bill

payment from his bank

account while his roommate

was nearby. His roommate

later authenticated into

Steve’s account using Steve's

ID/password and modified the

recurring payment. Upon

processing of the payment,

funds were redirected to an

account under the

roommate’s control

FC08 Unautho

rized

party

modified

payment

informat

ion

Imperso

nated

Authori

zed

Party

A person or

organization who

does not have

authorized

credentials but

has enough

information to

authenticate as

the Authorized

Party.

Authorized credentials in this

context include account login

information (e.g.,

ID/password) that allows one

to access an account and is

not specific to personal

information, contact

information, etc. Example:

Jim scheduled an online bill

payment. A day later, Jake

represented himself as Jim by

successfully answering

verification questions asked

by the call center associate.

Jake (as Jim) then instructed

the call center associate to

modify the scheduled

payment, redirecting it to an

account in his control. Upon

The Clearing House (RTP)

Under The Clearing House (TCH) RTP Operating Rule II.G.2, Participants must report

fraudulent activity involving the RTP System to TCH and the other Participant involved,

following the RTP Technical Specifications and Risk Management and Fraud Control

Requirements.

Section 5 of the Risk Management and Fraud Control Requirements states:

A fraudulent RTP Payment is a payment the Sending Participant determines was

unauthorized by the Sender ("Unauthorized Payment") based on an investigation of how it

was initiated.

Fraud

type

code

Code

name

Fraud

type

Description Notes/examples

receipt of the payment, Jake

withdrew the funds

Summary

You as a Cross River partner must report to Cross River any funds transfer using the

RTP network that a network user learns afterwards was not authorized by the sender,

so we can notify The Clearing House.

We will request that the funds receiver return the funds, flagging the request as due

to suspected fraudulent activity.

“A Participant must report any instance of fraudulent activity or suspected fraudulent

activity to TCH subject to and in accordance with the RTP Operating Rules and other

procedures established by TCH from time to time.”

A payment authorized by the Sender but induced under false pretenses does not

qualify as an Unauthorized Payment under this rule.

You must report any suspected unauthorized RTP Payments to Cross River. We take the

necessary steps, including notifying the Receiving Participant and submitting a Request for

Return of Funds message with the "FRAD" reason code to request a return.

Your timely reporting ensures compliance with TCH rules and facilitates an efficient fraud

response.

CRNow (book transfers)

Cross River’s procedures require participants to report fraudulent activity involving the

CRNow system.

A fraudulent CRNow (book transfers) payment is defined as:

You must ensure timely reporting of such transactions to Cross River.

Incident report submission summary

Partners must escalate the following unusual activity to Cross River Bank (CRB) via an

Incident Report (IR):

Summary

You as a Cross River partner must report any funds transfer made through Cross

River's CRNow (book transfers) network that is identified as fraudulent or

unauthorized.

“Any funds transfer completed through the CRNow Service, based on any Payment

sent or received by a CRNow Participant, that resulted from fraudulent or

unauthorized activity.”

Criminal violations involving insider abuse of any amount.

Criminal violations of $5,000 or more when a suspect can be identified.

Criminal violations of $25,000 or more, regardless of whether a suspect is identified.

Incident reporting process

Timely reporting is critical to ensure compliance and mitigate financial crime risks.

Incident report template

Download our MS Word incident report template as an example:

Incident report template.docx

Transactions aggregating $5,000 or more, if the Partner knows, suspects, or has

reason to suspect that the transaction:

May involve money laundering or other illegal activity.

Is designed to evade the BSA or its regulations.

Lacks a clear business purpose or is inconsistent with the customer’s expected

activity, with no reasonable explanation after reviewing available facts.

As a partner, maintain a documented incident reporting process to notify Cross River

of potentially unusual or suspicious activity.

Escalate any unusual activity within 5 days of detection by submitting a CRB Incident

Report to .unusualactivityreferrals@crossriverbank.com

Include any relevant supporting documentation in your report.

https://archbee-doc-uploads.s3.amazonaws.com/export/html-space/PUBLISHED-7OpmIKpt43QS75PzIOjr2-W7zqNyUdu681SmwK7gxhz.html

6. Card payments

Our card payments tutorials explain how to use our APIs to:

: Sign up a card and send funds to that card.Send a push transaction

: Sign up a card and pull funds from that card.Send a pull transaction

: Set up a PCI-compliant iFrame. This function will be deprecated. See

the of generating iFrame code.

Set up iFrame

template-based way

6.1. Send a push transaction

In this tutorial, you'll learn how to:

✅ Sign up a card

✅ Send a push payment

The tutorial uses these API endpoints:

The tutorial uses these webhooks:

Before you begin

Make sure you have:

This tutorial assumes you have a knowledge of APIs and how they work. Refer to the

for more details.API basics

API Description

POST /api/Card Signs up a card

POST /api/transaction Sends a payment

Webhook Description

CardAuthorized Reports when a card authorization attempt is completed

Shows you the status of the card

Transaction Reports a transaction

API credentials

requestId - your unique reference ID

cardToken - the token you received when you registered the card

Register relevant webhook events

to receive the webhooks available for P2C. These webhooks report relevant

events back to your system in real-time. This keeps you up to date on each transaction.

Sign up a card

To start a transaction you must first register a card. We use different endpoints to be able

to secure your customer's debit card numbers. To register a card, send Cross River the

card number. The card number is instantly converted into a token. Cross River doesn't save

any card number information. Doing this asynchronously allows Cross River to store your

customer's card information. This ensures that you don't need to retrieve the card

information again. It also keeps your customer's data secure.

The dollar amount to send

Enough funds in your account

The name of the person or organization originating the push transaction

Register

1. Call POST /api/Card .

2. When a card is registered, Cross River validates the card with the relevant card

network. This makes sure the card is a valid card and that it is allowed to receive

payments.

3. The CardAuthorized webhook is triggered.

Start a payment

When you send funds directly to a debit card, we call this a push payment, or a push-to-

card (P2C) transaction.

Sample request POST /api/Card

{

 "RequestId":"49af65c0-f815-4f49-ba8d-b67bf1b125f4",

 "FirstName":"Joseph",

 "LastName":"Roll",

 "OwnerExternalId":"4444",

 "Address1":"123 Main Street",

 "City":"Venice",

 "State":"CA",

 "ZipCode":"10989",

 "CountryCode":"US",

 "PhoneNumber":"5555559275",

 "Email":"{youremail}",

 "CreditCardNumber":"full card number",

 "ExpirationMonth":"06",

 "ExpirationYear":"20",

 "CCV":"420"

}

1. Authenticate into the Cross River system. This returns a token to you.

2. Use the token to call POST /api/transaction.

3. Cross River sends this request to the card networks. The networks direct the

transaction to the right bank.

4. The issuing bank (of the registered debit card) receives the transaction.

5. The issuing bank either authorizes or declines the transaction.

6. If the bank authorizes the transaction, your payee will receive the funds.

Sample request POST /api/transaction

6.2. Send a pull transaction

How to originate an Account Funding
Transaction (AFT)

In this tutorial, you'll learn how to:

✅ Register the relevant webhooks

✅ Sign up a card

✅ Start a pull transaction

An Account Funding Transaction (AFT) lets you pull funds from a debit card for specific

purposes. You can use an AFT to fund a wallet or a prepaid card. Or, you can use it to

initiate a person to person (P2P) transfer through the card network rails. AFTs are not

allowed for buying goods and services.

The tutorial uses these API endpoints:

The tutorial uses these webhooks:

This tutorial assumes you have a knowledge of APIs and how they work. Refer to the

for more details.API basics

API Description

POST /api/Card Signs up a card

POST /api/PullTransaction/ Starts a pull payment

Before you begin

Make sure you have:

Register relevant webhook events

to receive the webhooks available for P2C. These webhooks report relevant

events back to your system in real-time. This keeps you up to date on each transaction.

Sign up a card

To start a transaction you must first register a card. We use different endpoints to be able

to secure your customer's debit card numbers. To register a card, send Cross River the

card number. The card number is instantly converted into a token. Cross River doesn't save

any card number information. Doing this asynchronously allows Cross River to store your

customer's card information. This ensures that you don't need to retrieve the card

information again. It also keeps your customer's data secure.

Webhook Description

CardAuthorized Reports when a card authorization attempt is completed

Shows you the status of the card

Transaction Reports a transaction

API credentials

requestId - your unique reference ID

cardToken - the token you received when you signed up the card

The dollar amount to send

Register

1. Call POST /api/Card.

2. When a card is registered, Cross River validates the card with the relevant card

network. This makes sure the card is a valid card and that it is allowed to receive

payments.

Start a pull transaction

When you start a transfer, you are requesting funds (as the recipient) from a payor.

3. The CardAuthorized webhook is triggered.

Sample request POST /api/Card

{

 "RequestId":"49af65c0-f815-4f49-ba8d-b67bf1b125f4",

 "FirstName":"Joseph",

 "LastName":"Roll",

 "OwnerExternalId":"4444",

 "Address1":"123 Main Street",

 "City":"Venice",

 "State":"CA",

 "ZipCode":"10989",

 "CountryCode":"US",

 "PhoneNumber":"5555559275",

 "Email":"{youremail}",

 "CreditCardNumber":"full card number",

 "ExpirationMonth":"06",

 "ExpirationYear":"20",

 "CCV":"420"

}

1. Authenticate into the Cross River system. This returns a token to you.

2. Use the token to call POST /api/PullTransaction .

3. Cross River sends this request to the card networks. The networks route the

transaction to the appropriate bank.

4. The issuing bank (of the registered debit card) receives the transaction.

5. The issuing bank either authorizes or declines the transaction.

6. If the transaction is authorized, Cross River responds to your API call as shown

below.

Sample request POST /api/PullTransaction

curl -X POST --header 'Content-Type: application/json'

--header 'Accept: application/json'

--header 'Authorization: Bearer 12AAB60C01ED32A0C18D44111A753BF3CE180BC716FEC

 "requestId": "89GVA07C-FJ8X-42NV5-9A00C9-6MS5AQ3D7100",

 "cardToken":"KR7D47MNJIL2R39OZNRVPC0DIS82ES8JE6J7VU",

 "amount": 400

 }

Sample response POST /api/PullTransaction

{

 "version": "1.0.0.0",

 "result": {

 "transactionRequestId": "7CE5A0DC-253B-4AB5-9CC9-6E9BE63D7100",

 "amount": 400,

 "transactionRequestedAt": "2022-08-03T21:09:13.5882004Z",

 "transactionStatus": "Succeeded",

 "errorDescription": null,

 "creditCardId": "KR7D47MNJIL2R39OZNRVPC0DIS82ES8JE6J7VU",

 "railId": "TabaPay",

 "network": "MasterCard",

 "retrievalReferenceId": "8abcb1fa-51f1-4b2d-9998-5948877bdcc0",

 "actualTransactionDoneAt": "2022-08-03T21:09:13.937108Z",

 "requestApproved": true,

 "responseReceived": true,

 "responseCode": "00",

 "responseDescription": "Approved",

 "traceNumber": "xxx",

 "error": null,

 "requesterName": null,

 "requesterMcc": null

 },

 "isSuccessfull": true,

 "isSuccessful": true

}

6.3. Set up iFrame

How to set up your iFrame to integrate with P2C

As a Cross River merchant partner, suppose you prefer not to hold the (PII) of your

customers. This could include, for example, customer debit card numbers and security

details. iFrames offer a solution to PII problem. The Cross River iFrame gives you a simple

interface to capture debit card details. You can easily add an iFrame to your website.

Your customer's card details pass through directly to Cross River. They are not stored on

your servers.

In this tutorial, you'll learn how to:

✅ Register the relevant webhooks

✅ Set up an iFrame to integrate with P2C

The tutorial uses these API endpoints:

The tutorial uses these webhooks:

This tutorial assumes you have a knowledge of APIs and how they work. Refer to the

for more details.API basics

API Description

POST

/api/V2/iFrameConfiguration/GenerateOtcSignupCard

Add an iFrame into your

site

Webhook Description

CardAuthorized Reports when a card authorization attempt is completed

Shows you the status of the card

Before you begin

Make sure you have:

Register relevant webhook events

to receive the webhooks available for P2C. These webhooks report relevant

events back to your system in real-time. This keeps you up to date on each transaction.

The CardAuthorized webhook reports when a new card was authorized on our system.

Set up your iFrame

Attributes for building the iFrame

API credentials

Contacted the to register the domains where you'll be embedding

the iFrame

Integration Team

Register

No webhook received

Were you able to sign up for a card but didn’t get a webhook? The webhook function

call might not be returning a 200 (“success”) message to Cross River.

1. Authenticate into the Cross River system. This returns a token to you.

2. Use the token to call POST api/IframeConfiguration/BuildSignupCardUrl . The

endpoint will return a response containing a unique URL. That URL is valid for 5

minutes.

3. Pass the URL into the src attribute of the iFrame.

mailto:Integrations.Support@crossriver.com

requestId

string

The GUID that enables the application to link request with

response

customerReferenc

eNumber

string

A 4-digit code, assigned by the merchant, to identify the

cardholder

domain

string

The name of a valid top-level internet domain where consumers

will use the iFrame. For example, myfintech.com. This domain must

appear in the Cross River allowlist.

successContinueN

avigationPoint

string

The landing page you are directed to if the sign up was successful

failureContinueNa

vigationPoint

string

The landing page you are directed if the sign-up wasn't

succeessful

firstName

string

Cardholder's first name

lastName

string

Cardholder's last name

address1

string

Primary location details of cardholder. For instance, street name,

house or building number, and PO box. Maximum 255 characters.

address2

string

Secondary location details of cardholder. For instance, number of

apartment or floor. Maximum 255 characters.

city

string

City full name

state

string

2-letter code of the cardholder's state

countryCode

string

2-letter Country code (2 letters)

zipCode

string

ZIP code

Response attributes

requestId

string

The GUID that enables the application to link request with

response

email

string

A valid cardholder email address, for example,

me@mailprovider.com

phoneNumber

string

Phone number, no dashes required

showOptionalField

s

boolean

True if optional fields will appear in the iFrame, otherwise false

Sample request

{

 "requestId": "89clha9s-27ci-90ck-7jcs-8lksic02cjag",

 "customerReferenceNumber": "string",

 "domain": "string",

 "successContinueNavigationPoint": "string",

 "failureContinueNavigationPoint": "string",

 "firstName": "Joseph",

 "lastName": "Roll",

 "address1": "123 Main Street",

 "address2": "string",

 "city": "Venice",

 "state": "CA",

 "countryCode": "string",

 "zipCode": "66666",

 "email": "{email}",

 "phoneNumber": "string",

 "showOptionalFields": true

}

result

string

Result of whether or not the source URL was added to our server.

Success or fail.

isSuccessful

boolean

True if a unique URL was built successfully, otherwise false

Sample response

{

 "version": "1.0.0.0",

 "result": "Success",

 "isSuccessfull": true

}

7. International payments

In this tutorial, you'll learn how to:

✅ Get an estimate of the exchange rate for a cross border payment

✅ Get a list of fields required to get a valid executable quote for the payment

✅ Request an executable quote

✅ Send a payment

✅ Deal with returned and rejected payments

✅ Send an international payment using COS Explorer

The tutorial uses these API endpoints:

If you are new to International Payments we recommend you read

before starting this tutorial.

This tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, refer to .

International

payments

API basics

Before you begin

Make sure you have:

Register relevant webhook events

To receive the webhook events for this tutorial you need to each specific webhook

event type. Once you are registered, the event objects are sent to the registered URLs.

A basic event object contains a list of resource identifiers used to download details on

each event. An extended event object contains more details.

For this tutorial register for this webhook event:

API Description

GET

/international/v1/estimates

Returns the estimated cost of sending an international

payment, including the exchange rate

GET

/international/v1/meta/quot

e-requirements

Returns a list of country-specific fields you need to

submit when requesting a quote

POST

/international/v1/quotes

Requests an executable payment quote for sending

either USD or foreign currency before actually sending

funds

POST

/international/v1/payments

Executes a payment quote to send funds internationally

API credentials

Account number of the sending Cross River account

Sending account configured by Cross River to send International Payments

Fees configured by Cross River according to your signed agreement

register

Send an international payment from a Cross
River account

To send a payment cross border, you must make several API calls:

To get an exchange rate estimate

1 Call the endpoint. For this call, you must supply

your Cross River accountNumber , the desired currency of the received payment,

and either amount in USD you plan to send (fromAmount) or the amount in the

foreign currency you want sent (toAmount).

In this example, the account number is 158560897007, the currency is Great British

Pounds (GBP), and the from amount is 10.00 USD (1000).

Event Name Description

International.Payment.Se

nt

Funds have been sent via a wire payment to the receivers

bank.

1. Get an estimate of the fees and exchange rate.

This call gives a general idea of how much the money transfer will cost the customer.

We recommend you call this endpoint but it's not required.

2. Determine the required fields for getting a quote for a payment to a specific

country.

Depending on the country, the required information can differ. It's important to know

which values you must supply for the quote call to complete without errors.

3. Request a quote for the exchange.

This call returns a quoteId that is required to make the actual payment. The quote

is usually good for 30 seconds.

4. Originate the payment.

Include the quoteId to use the API to send the payment.

Money amounts in API calls and responses are written without a decimal point

between the dollars and the cents.

GET /international/v1/estimates

2 A successful API call returns a JSON response with the details of the estimate. This

estimate is non-binding and only gives you an approximate idea of what the

exchange rate will be.

In this example, we provided the fromAmount . The toAmount returned is 7.89 GBP

at an exchange rate of 0.7889 USD to the GBP. In addition, you can see that a regular

transaction costs 1.29 USD while a priority transaction (SWIFT) costs 14.00 USD.

To get a list of required fields for a quote

1 Call GET /International/v1/meta/quote-requirements. For this call, you must

supply values for all possible attributes. None are optional.

In this example, we provide the following values:

IMPORTANT

You must have a value for either a fromAmount or a toAmount , but not both.

Sample request

curl --location 'https://sandbox.crbcos.com/international/v1/estimates?a

--data ''

Sample response

{

 "accountNumber": "158560897007",

 "currency": "gbp",

 "fromAmount": 1000,

 "toAmount": 789,

 "exchangeRate": "0.7889",

 "regularTransactionFeeAmount": 129,

 "priorityTransactionFeeAmount": 1400

}

2 A successful API call returns a JSON response with a list of required fields/attributes

you must provide values for when you call POST /International/v1/quotes .

The attributes in the response are required for the quote that will have the

parameters as defined in this request. The response values describe the required

responses. For example, for lastName the value is ^([^0-9]{2,255})$, indicating

that regular expression characters are permitted, up to 255 characters maximum.

The bankCountryCode is GB, as provided in the request. Attributes regarding

entities and FIs refer to the beneficiary only

currency : GBP (Great Britain Pounds)

beneficiaryCountry : US (United States)

bankCountryCode : GB (Great Britain)

entityType : Individual (what legal entity is receiving the payment)

priority : If no value is supplied, the default is false meaning not via SWIFT.

Sample request

curl --location 'https://sandbox.crbcos.com/International/v1/meta/quote-

--data ''

To request an international payment quote

1 Call POST /International/v1/quotes . For this call, you must supply values for the

fields returned in the the GET /International/v1/meta/quote-requirements call.

Sample response

[

 {

 "firstName": "^([^0-9]{2,255})$",

 "lastName": "^([^0-9]{2,255})$",

 "currency": "gbp",

 "address": "^.{1,255}",

 "city": "^.{1,255}",

 "postalCode": "^.{1,12}$",

 "countryCode": "US",

 "routingCodeType1": "SortCode",

 "routingCodeValue1": "^\\d{6}$",

 "bankName": "^.{1,255}",

 "bankCountryCode": "GB",

 "receiverAccountNumber": "^\\d{8}$",

 "entityType": "Individual",

 "paymentNetwork": "Regular",

 "priority": false

 }

]

2 Sample request

curl --location 'https://sandbox.crbcos.com/International/v1/quotes' \

--data '{

 "currency": "gbp",

 "accountNumber": "158560897007",

 "fromAmount": "500",

 "toAmount": "",

 "beneficiary": {

 "firstName": "Jon",

 "lastName": "Smith",

 "fullName": "JonSmith",

 "birthDate": "2001-06-18T13:05:09.015Z",

 "address": "1 Street",

 "city": "Winfield",

 "stateProvince": "",

 "postalCode": "GB12345",

 "countryCode": "GB",

 "entityType": "Individual"

 },

 "beneficiaryFi": {

 "bankName": "Bank UK",

 "bankCountryCode": "GB",

 "bankAddress": "1 Avenue",

 "bankAccountType": "Checking",

 "routingCodeType1": "SortCode",

 "routingCodeValue1": "123456789",

 "routingCodeType2": "aba",

 "routingCodeValue2": "123456789",

 "bicSwift": "TGCLGB99",

 "iban": "GB33BUKB20201555555555"

 },

 "priority": true,

 "purpose": "SRV"

}'

3 A successful API call returns a JSON response with a quote ID in the id field and

information about the exchange rate. You need the quote ID to make the payment.

The quote is valid for 30 seconds.

In this example, the quote ID is f710a42a-e03a-47b8-a415-b3050061085e.

To send an international payment

JSON

{

 "id": "f710a42a-e03a-47b8-a415-b3050061085e",

 "accountNumber": "158560897007",

 "currency": "gbp",

 "beneficiary": {

 "firstName": "Jon",

 "lastName": "Smith",

 "birthDate": "2001-06-18T00:00:00-04:00",

 "address": "1 Street",

 "city": "Winfield",

 "postalCode": "GB12345",

 "countryCode": "GB",

 "entityType": "Individual"

 },

 "beneficiaryFi": {

 "bankName": "Bank UK",

 "bankCountryCode": "GB",

 "bankAddress": "1 Avenue",

 "bankAccountType": "Checking",

 "routingCodeType1": "SortCode",

 "routingCodeValue1": "123456789",

 "routingCodeType2": "ABA",

 "routingCodeValue2": "123456789",

 "bicSwift": "TGCLGB99",

 "iban": "GB33BUKB20201555555555"

 },

 "fromAmount": 500,

 "toAmount": 394,

 "transactionFee": 100,

 "conversionRate": 0.7889,

 "estimatedDeliveryDate": "2025-06-23T00:00:00-04:00",

 "expiresAt": "2025-06-23T01:54:18.8357042-04:00",

 "status": "Created",

 "priority": true,

 "paymentNetwork": "Priority",

 "purpose": "SRV"

}

1 Call POST /International/v1/payments . For this call, you must supply the quote ID

from the id field returned in the the POST /International/v1/quotes call. In this

example, the quote ID is f710a42a-e03a-47b8-a415-b3050061085e, which we

received in the response. You can add a client identifier if you like.

2 A successful API call returns a JSON response with the payment ID in the id field

and information about the payment. In this example, the payment ID is f710a42a-

e03a-47b8-a415-b3050061085e.

Sample request

curl --location 'https://sandbox.crbcos.com/International/v1/payments' \

--data '{

 "quoteId": "f710a42a-e03a-47b8-a415-b3050061085e"

}'

Sample response

{

 "id": "f710a42a-e03a-47b8-a415-b3050061085e",

 "partnerId": "19222b81-0e1e-452d-a842-b2f1011c16f3",

 "productId": "57146944-b145-4326-884d-b2f700ecf688",

 "quoteId": "1a7c9fa9-10fb-4db8-a620-b3050061ca0e",

 "fromCurrency": "usd",

 "toCurrency": "gbp",

 "fromAmount": 500,

 "toAmount": 394,

 "accountNumber": "158560897007",

 "estimatedDeliveryDate": "2025-06-23T00:00:00-04:00",

 "originator": {

 "firstName": "Brandon",

 "lastName": "Sanderson",

 "fullName": "Brandon Sanderson",

 "address": "400 Kelby St",

 "city": "Fort Lee",

 "stateProvince": "NJ",

 "postalCode": "07024",

 "countryCode": "US",

 "entityType": "Individual"

 },

 "beneficiary": {

 "firstName": "Jon",

 "lastName": "Smith",

 "fullName": "Jon Smith",

 "birthDate": "2001-06-18T00:00:00-04:00",

 "address": "1 Street",

 "city": "Winfield",

 "postalCode": "GB12345",

 "countryCode": "GB",

 "entityType": "Individual"

 },

 "beneficiaryFi": {

 "bankName": "Bank UK",

 "bankCountryCode": "GB",

 "bankAddress": "1 Avenue",

 "bankAccountType": "Checking",

 "routingCodeType1": "SortCode",

 "routingCodeValue1": "123456789",

 "routingCodeType2": "ABA",

 "routingCodeValue2": "123456789",

 "bicSwift": "TGCLGB99",

 "iban": "GB33BUKB20201555555555"

 },

3 When the payment completes an international.Payment.Sent webhook event

fires.

The payment ID (f710a42a-e03a-47b8-a415-b3050061085e) provided in the

response body of the payment origination request (id) appears in the details

object of the international.Payment.Sent event .

 "status": "Created",

 "purpose": "SRV",

 "paymentType": "Transfer",

 "direction": "Outbound",

 "priority": true,

 "feeAmount": 100,

 "feeCurrency": "usd",

 "source": "Api",

 "createdAt": "2025-06-23T01:56:22.770927-04:00",

 "lastModifiedAt": "2025-06-23T01:56:22.8905947-04:00",

 "limitsEligibleOn": "2025-06-23T01:56:22.770927-04:00"

}

COS Explorer

Sample International.Payment.Sent event

{

 "id": "965a22ca-7005-4c88-b7c0-b0f1018381da",

 "eventName": "International.Payment.Sent",

 "status": "Pending",

 "partnerId": "19222b81-0e1e-452d-a842-b2f1011c16f3",

 "createdAt": "2024-01-08T18:30:52.247-05:00",

 "resources": [

 "international/v1/payments/f710a42a-e03a-47b8-a415-b3050061085e"

],

 "details": [

 {

 "paymentId": "f710a42a-e03a-47b8-a415-b3050061085e",

 "productId": "57146944-b145-4326-884d-b2f700ecf688",

 "quoteId": "f710a42a-e03a-47b8-a415-b3050061085e",

 "fromCurrency": "usd",

 "toCurrency": "gbp",

 "fromAmount": 500,

 "toAmount": 394,

 "feeAmount": "100",

 "accountNumber": "158560897007",

 "status": "Completed",

 "reason": null,

 "clientIdentifier": null,

 "priority": "True",

 "payerEntityType": "Individual",

 "companyName": null,

 "firstName": "Sara",

 "lastName": "Kim",

 "address": "250 Kuhn Highway",

 "city": "Grover",

 "stateProvince": "RR",

 "postalCode": "28073",

 "country": "GB",

 "birthDate": null

 }

]

}

Get an estimate

Before committing to sending an International Payment, you can get an estimated FX rate

for your desired currency. This optional step includes Cross River's spread fee charge and

does not require beneficiary information.

In the International tab:

Originate an International Payment

1 Click Originate Payment and complete all required fields including beneficiary details

and Priority, where Yes indicates and No indicates local rail.

1. Click Get Estimate. The Get Estimate page displays. Enter your account number

(Acct #) in the search bar.

2. In the currency box enter either the dollar amount you want to send or the foreign

currency amount you want the beneficiary receive. Do not enter both values.

3. Click Get Estimate. A currency estimate displays.

SWIFT

The required information, such as, account number, IBAN, BIC/SWIFT, sort

code, may vary depending on the destination country of the international

payment.

2 Click Get Quote.

3 After clicking Get Quote, you will see the FX rate, spread fees, and transaction fees

for the payment. The FX quote is valid for 1 minute before it updates. If you click

Send payment after the quote expires you will need to go back to Step 2 and

regenerate a quote.

4 Click Send Payment to originate the payment.

5 To view your payment click Payments.

8. ACH

Our ACH tutorials explain how to use our APIs to:

: Originate a standard or same-day ACH payment.Send an ACH payment

: Send two or more payments in the same call.Send a client batch

: Test the system with our simulation endpoints.

You can also use this endpoint to fund a test account.

Simulate inbound ACH payments

8.1. Send an ACH payment

In this tutorial, you'll learn how to

✅ Originate a push payment

✅ Monitor status of the payment

✅ Handle notifications of change to the outbound payment (rejected, returned, NOC)

The tutorial uses these API endpoints:

Before you begin

Make sure you have:

If you are new to APIs and how the work we recommend you visit .API basics

API Description

POST /ach/v1/payments Originate the payment

Do not poll the APIs for status updates and reconciliation purposes

API credentials

Partner ID

Account Number

 the following webhook eventsRegister

Originate the ACH payment

There are two types of ACH payments:

This tutorial covers push payments. A push payment can result in:

Let's send $100 to Bob Smith who has an account at another bank. Since we are

transferring the money to Bob's account the transactionType attribute must be Push.

Webhook Description

Ach.Payment.Sen

t

Outbound payment has been transmitted to the Federal Reserve

Ach.Return.Rece

ived

A previously originated payment has been returned by the receiving

bank

Ach.Noc.Receive

d

A notification of change has been sent from the receiving bank

regarding a previous origination

Ach.Payment.Rej

ected

The ACH payment was rejected

Push payment

When you transfer money to an account in another bank.

Pull payment

When you request funds from an account in another bank.

Use a (prenote) if you want to verify and validate account details. A

prenote simply means originating a payment of $0.00. If you don't receive an error

response, the details are correct. This step is optional.

validation

The recipient receives the payment

Cross River or ACH rejects the payment

The recipient FI returns the payment

The recipient receives the payment but ACH sends a Notification of Change.

To originate an ACH payment

1 Call POST /ach/v1/payments .

The details of the push payment are defined by the .

2 A successful API call returns a JSON response with the details of your originated

payment.

call attributes

IMPORTANT

We strongly recommend that you include an idempotency key in your request

header to provide duplicate protection should the payment fail. Read more

about .idempotency keys

Money amounts in API calls and responses are written without a decimal point

between the dollars and the cents.

Curl

POST /ach/v1/payments

{

 "accountNumber": "2714035231",

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "456789000",

 "accountType": "Checking",

 "name": "Bob Smith",

 "identification": "XYZ123",

 },

 "secCode": "WEB",

 "description": "Payment",

 "transactionType": "Push",

 "amount": 10000,

 "serviceType": "SameDay",

 "clientIdentifier": "21fe77da-e2f8-4475-9397-81a293d63b8x"

}

JSON

{

 "id": "b96b935a-4713-4aae-973b-aeee00f1a749",

 "accountNumber": "2714035231",

 "referenceId": "A2236S8S20FH",

 "paymentType": "Origination",

 "direction": "Outbound",

 "status": "Created",

 "source": "Api",

 "postingType": "Individual",

 "postingCode": "OK",

 "posting": "Pending",

 "originator": {

 "routingNumber": "021214891",

 "accountNumber": "2714035231",

 "accountType": "Checking",

 "name": "Cross River Bank",

 "identification": "021214891"

 },

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "456789000",

 "accountType": "Checking",

 "name": "Bob Smith",

 "identification": "XYZ123"

 },

 "secCode": "WEB",

 "description": "Payment",

 "transactionType": "Push",

 "amount": 10000,

 "serviceType": "SameDay",

 "effectiveDate": "220811",

 "traceNumber": "021214898943562",

 "wasReturned": false,

 "wasCorrected": false,

 "holdDays": 0,

 "original": {

 "paymentId": "b96b935a-4713-4aae-973b-aeee00f1a749"

 },

 "createdAt": "2022-08-11T10:39:49.9996701-04:00",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "productId": "cc62e17f-5912-483e-9e42-aed30112fbb6",

 "lastModifiedAt": "2022-08-11T10:39:49.9996701-04:00",

 "clientIdentifier": "21fe77da-e2f8-4475-9397-81a293d63b8x"

}

The status attribute in the response indicates that your payment was created. It

does not indicate that your payment was successful.

Payment confirmation

After originating the payment, its status changes to Pending or Hold for up to several

hours.

Next, the payment moves to Batched status. If the payment is originated close to a

weekend or bank holiday it may take a few days for the status to transition to Batched.

When the Federal Reserve accepts the payment the status changes to processing, which

triggers the Ach.Payment.Sent event.

The payment ID provided in the response body of the payment origination request (id)

appears in the details object of the Ach.Payment.Sent event. In this case: b96b935a-

4713-4aae-973b-aeee00f1a749.

A Pending status lets you know that the payment request is created but has not been

batched for release to the Federal Reserve. The batching process occurs several

times a day.

A Hold status indicates that the payment request is in review and has not yet been

approved for release to the Federal Reserve.

Payment status webhook events

Rejected payment

There may be situations where a payment request is rejected. A payment request rejected

after initially receiving a success response from POST /ach/v1/payments could be due

to:

JSON

{

 "id": "7c135bfa-234f-48d2-9d70-adc70135d15f",

 "eventName": "Ach.Payment.Sent",

 "status": "Pending",

 "partnerId": "30dee145-b6a2-4058-8dc3-ac4000dee91f",

 "createdAt": "2021-10-20T14:48:01.12-04:00",

 "resources": [

 "ach/v1/payments/b96b935a-4713-4aae-973b-aeee00f1a749"

],

 "details": [

 {

 "paymentId": "b96b935a-4713-4aae-973b-aeee00f1a749",

 "coreTransactionId": null,

 "memoPostId": "85b509f9-61f0-4af3-b64c-b04900de43da",

 "clientBatchId": null,

 "clientBatchSequence": null,

 "accountNumber": "2714035231",

 "postingCode": null,

 "clientIdentifier": null,

 "purpose": "ENTERED BY #60C3C9C8FD17BA0070A7FB4F#"

 }

]

}

Technical Rejection. The transaction was unable to post from the account being

used for your request, and is covered in this tutorial.

Example

You originate a push payment for an amount greater than the balance of the

originator account

You originate a payment from an account with an active restriction

To simulate a technical rejection, originate a push payment for an amount that exceeds the

originating account balance. Learn more about .

Again, let's send $100 to Bob Smith who has an account at another bank. This time, the

amount you are sending exceeds the amount in the originator account.

1 Call POST /ach/v1/payments .

2 Define the call attributes as above in To originate an ACH payment

The following JSON response is returned:

Manual Rejection. The payment was rejected by the Cross River Operations or

BSA/AML Teams. Contact Cross River directly for information on why the payment

was rejected.

simulations

Curl

{

 "accountNumber": "2674958042",

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "456789000",

 "accountType": "Checking",

 "name": "Bob Smith",

 "identification": "XYZ123",

 },

 "secCode": "WEB",

 "description": "Payment",

 "transactionType": "Push",

 "amount": 10000,

 "serviceType": "SameDay",

 "clientIdentifier": "bd3e0315-5f29-4b1c-a004-1fcdd0b8bee1"

}

JSON

{

 "id": "f868a125-22b8-4c7e-a8dd-aeee00f76ce7",

 "accountNumber": "2674958042",

 "referenceId": "A223O84JDV79",

 "paymentType": "Origination",

 "direction": "Outbound",

 "status": "Created",

 "source": "Api",

 "postingType": "Individual",

 "postingCode": "OK",

 "posting": "Pending",

 "originator": {

 "routingNumber": "021214891",

 "accountNumber": "2674958042",

 "accountType": "Checking",

 "name": "Cross River Bank",

 "identification": "021214891"

 },

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "456789000",

 "accountType": "Checking",

 "name": "Bob Smith",

 "identification": "XYZ123"

 },

 "secCode": "WEB",

 "description": "Payment",

 "transactionType": "Push",

 "amount": 10000,

 "serviceType": "SameDay",

 "effectiveDate": "220811",

 "traceNumber": "021214896697194",

 "wasReturned": false,

 "wasCorrected": false,

 "holdDays": 0,

 "original": {

 "paymentId": "f868a125-22b8-4c7e-a8dd-aeee00f76ce7"

 },

 "createdAt": "2022-08-11T11:00:50.8991331-04:00",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "productId": "d5f3ce06-8550-413e-a2e1-aed1016d6eea",

 "lastModifiedAt": "2022-08-11T11:00:50.8991331-04:00",

 "clientIdentifier": "bd3e0315-5f29-4b1c-a004-1fcdd0b8bee1"

}

The Ach.Payment.Rejected event is triggered.

The details object in the Ach.Payment.Rejected event contains the payment ID

from the response body (id). In this case: f868a125-22b8-4c7e-a8dd-

aeee00f76ce7.

In the details object of the event, the postingCode tells you the , in

this case RES (Account Restriction). If the payment needs to be reviewed manually,

the rejectionReason gives you more information about the rejection.

Returned payment

rejection code

Sample Ach.Payment.Rejected event

{

 "id": "496659ff-6034-480a-84af-aeee00f78ade",

 "eventName": "Ach.Payment.Rejected",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2022-08-11T11:01:16.483-04:00",

 "resources": [

 "ach/v1/payments/f868a125-22b8-4c7e-a8dd-aeee00f76ce7"

],

 "details": [

 {

 "paymentId": "f868a125-22b8-4c7e-a8dd-aeee00f76ce7",

 "coreTransactionId": null,

 "memoPostId": "517f24c5-3cf1-4168-b721-b04900e36f00",

 "clientBatchId": null,

 "clientBatchSequence": null,

 "accountNumber": "2674958042",

 "postingCode": "RES",

 "clientIdentifier": null,

 "purpose": "ENTERED BY #60C3C9C8FD17BA0070A7FB4F#",

 "rejectionReason": "Other"

 }

]

}

Sometimes an ACH payment is returned by the receiving bank. See for a

complete list of why a payment might be returned.

Most returns occur within 2 business days, but may take longer.

A payment return creates a new payment record with the paymentType set as Return. The

new payment record is connected to the original payment record with the

previous.paymentId field.

A payment returned from a receiving bank triggers the ACH.Return.Received webhook

event.

Here's an example of an ACH return webhook event:

return codes

Example

The receiving bank can't find the specified receiver account number.

IMPORTANT

Once payment status transitions to Complete, the payment record is no longer

updated, even if the payment is returned.

The event shows reasonCode R01 (Insufficient Funds). The originalPaymentId field

shows the ID of the original outbound payment.

Notification of Change (NOC)

There are times when Cross River receives an ACH notification of change (NOC) related to

an outbound payment. When you create an API call, a NOC is referred to as a Correction in

the paymentType attribute. Unlike an ACH return, a NOC indicates that the payment you

previously originated:

Register for the Ach.Noc.Received webhook event to be notified of an inbound NOC.

Sample Ach.Return.Received event

{

 "id": "d3ad6473-6690-44f1-a4a6-b04900d95419",

 "eventName": "Ach.Return.Received",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-07-24T09:11:16.133-04:00",

 "resources": [

 "ach/v1/payments/fb05013b-eaba-439e-8c6b-b04900d8f805"

],

 "details": [

 {

 "paymentId": "fb05013b-eaba-439e-8c6b-b04900d8f805",

 "coreTransactionId": "28633d37-f441-496a-ab07-b04900d93e75",

 "originalPaymentId": "1a1a9919-33b5-4933-9b9f-b034011462df",

 "accountNumber": "2151546989",

 "traceNumber": "021000021754553",

 "reasonCode": "R01",

 "reasonData": ""

 }

]

}

Posted to the receiver account

Contained an error (such as an incorrect routing number)

See for a complete listACH correction codes

Here's an example of a NOC webhook event:

The reasonCode attribute in the response is C02. This indicates an Incorrect Routing

Number. The reasonData attribute is the correct receiver routing number.

If you receive a NOC notification, update your internal records with the information you

receive in the reasonData attribute.

Sample Ach.Noc.Received event

{

 "id": "43d767a8-6b3a-4b5e-9fe6-b05401215333",

 "eventName": "Ach.Noc.Received",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-08-04T13:33:24.01-04:00",

 "resources": [

 "ach/v1/payments/197021dd-4b47-47b3-a75e-b0540120f5f2"

],

 "details": [

 {

 "paymentId": "197021dd-4b47-47b3-a75e-b0540120f5f2",

 "coreTransactionId": "578f36cd-f8e8-47ba-afa8-b05401213c5f",

 "originalPaymentId": "2cc0a0dd-6d7e-4ad9-9d3e-b0540105ba19",

 "accountNumber": "2696592019",

 "traceNumber": "021200333650075",

 "reasonCode": "C02",

 "reasonData": "026009593"

 }

]

}

8.2. Send a client batch

In this tutorial, you'll learn how to

✅ Register the relevant webhooks

✅ Submit a client batch of payments

✅ Cancel the batch

The tutorial uses these API endpoints:

The tutorial uses these webhooks. See all ACH-related .

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API see for more details.API basics

API Description

POST /ach/v1/client-batches Submits 2 or more payments from the same Cross

River account number as a batch

POST /ach/v1/client-

batches/{id}/cancel

Cancels all the payments in the batch that have not yet

been completely processed

IMPORTANT

Do not poll the APIs for status updates and reconciliation purposes.

Incorporate webhooks into the payment reconciliation process.

webhook events

Before you begin

Make sure you have:

Register relevant webhook events

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Submit a client batch

Use a client batch when you have several transfers to or from the same account. For

example, for payroll. In this tutorial the example account number is 2207975570. The

following 5 different actions appear in the sample code.

Webhook Description

Ach.Batch.Import

ed

Notifies you that the client batch has been imported

Ach.Batch.Cancel

ed

Notifies you that all pending or on-hold payments in the client

batch are canceled

API credentials

Partner ID

Account Number

register

1 Call POST ach/v1/client-batches . The details of each payment are defined by the

call attributes. Values for these attributes must be provided for each payment in the

batch.

Name Account

number

Transactio

n type

Service

type

Amount Routing

number

Account

type

John Wick 12345678 Push SameDay 113 021000021 Checking

Cleveland

Brown

234212345

8

Pull Standard 243591 021000021 Checking

Matt

Cauthon

234212345

8

Pull Standard 50 021000021 Checking

Perrin

Aybara

234212345

8

Push Standard 2750 021000021 Checking

Elayne

Trakand

234212345

8

Pull SameDay 15000 021000021 Checking

IMPORTANT

We strongly recommend that you include an idempotency key in your request

header to provide duplicate protection should the payment fail. Read more

about .idempotency keys

Money amounts in API calls and responses are written without a decimal point

between the dollars and the cents.

Curl

POST ach/v1/client-batches

{

{

 "payments": [

 {

 "accountNumber": "2207975570",

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "12345678",

 "accountType": "Checking",

 "name": "John Wick"

 },

 "secCode": "PPD",

 "description": "string",

 "transactionType": "Push",

 "amount": 113,

 "serviceType": "SameDay"

 },

{

 "accountNumber": "2207975570",

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "2342123458",

 "accountType": "Checking",

 "name": "Cleveland Brown"

 },

 "secCode": "PPD",

 "description": "string",

 "transactionType": "Pull",

 "amount": 243591,

 "serviceType": "Standard"

 },

{

 "accountNumber": "2207975570",

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "2342123458",

 "accountType": "Checking",

 "name": "Matt Cauthon"

 },

 "secCode": "PPD",

 "description": "string",

 "transactionType": "Pull",

 "amount": 50,

 "serviceType": "Standard"

2 A successful API call returns a JSON response with the details of the client batch

record that contains the client batch ID (in our case, fcb7188f-e051-4f5b-addd-

afaa00eadb3a) and individual paymentIdentifiers . The identifiers appear in the

response in the order that the payments were listed in the request. So in our case,

the payment to John Wick is assigned paymentIdentifier 04793f3-13d9-4d52-

b57e-afaa00eb6c74, the payment from Cleveland Brown corresponds to

dbe36253-06d1-462a-9117-afaa00eb6c74, and so on.

 },

{

 "accountNumber": "2207975570",

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "2342123458",

 "accountType": "Checking",

 "name": "Perrin Aybara"

 },

 "secCode": "PPD",

 "description": "string",

 "transactionType": "Push",

 "amount": 2750,

 "serviceType": "Standard"

 },

{

 "accountNumber": "2207975570",

 "receiver": {

 "routingNumber": "021000021",

 "accountNumber": "2342123458",

 "accountType": "Checking",

 "name": "Elayne Trakand"

 },

 "secCode": "PPD",

 "description": "string",

 "transactionType": "Pull",

 "amount": 15000,

 "serviceType": "SameDay"

 }

]

}

The status attribute in the response indicates that your batch is processing. It

does not indicate that the batch was imported successfully.

The importCount attribute in the response indicates how many payments were

imported (meaning originated) out of the total at the time of the response.

When the status of the client batch changes to imported the

Ach.Batch.Imported webhook event fires.

Sample client batch response

{

 "id": "fcb7188f-e051-4f5b-addd-afaa00eadb3a",

 "referenceId": "CB0461724AAWT",

 "status": "Processing",

 "accountNumber": "2207975570",

 "paymentCount": 5,

 "debitTotal": 258641,

 "creditTotal": 2863,

 "importCount": 0,

 "productId": "cc62e17f-5912-483e-9e42-aed30112fbb6",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-02-15T09:15:05.1486312-05:00",

 "lastModifiedAt": "2023-02-15T09:15:05.1486312-05:00",

 "paymentIdentifiers": [

 "f04793f3-13d9-4d52-b57e-afaa00eb6c74",

 "dbe36253-06d1-462a-9117-afaa00eb6c74",

 "1e1a08c7-1e60-452b-b22b-afaa00eb6c74",

 "a0bc6816-e85e-4ba6-bf9a-afaa00eb6c74",

 "6ed9ea59-2522-4550-8e5d-afaa00eb6c74"

]

}

The status in the webhook refers to the webhook status, not the client batch

status.

For example, when the Federal Reserve accepts the payment the status changes to

processing, which triggers the Ach.Payment.Sent event. Every status change from

this point on triggers the event until the payment posts to the receiving account

(status: complete).

Cancel a payment in the batch

Sometimes it's most efficient to cancel a client batch before all the payments have

imported rather than try to cancel a large number of payments individually. Call the cancel

batch API to cancel any pending or on-hold payments within a batch.

Call POST /v1/client-batches/{id}/cancel to cancel the batch. Use the client batch ID:

the id value (in our case, fcb7188f-e051-4f5b-addd-afaa00eadb3a) received in the

response to the POST ach/v1/client-batches call.

Ach.Batch.Imported webhook

{

 "id": "b060d47c-7ab5-4a34-8803-afaa00ec617e",

 "eventName": "Ach.Batch.Imported",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-02-15T09:20:38.18-05:00",

 "resources": [

 "ach/v1/client-batches/fcb7188f-e051-4f5b-addd-afaa00eadb3a"

],

 "details": [

 {

 "clientBatchId": "fcb7188f-e051-4f5b-addd-afaa00eadb3a",

 "accountNumber": "2207975570"

 }

]

}

A successful API call returns a JSON response with the details of the client batch record

that contains the individual payment identifiers of all payments that were canceled.

(Payments with a Completed status cannot be canceled.) The status in the response is

Canceling. As with the client batch request above, each identifier returned corresponds to

the order in which the payments were presented in the request.

Curl

curl -X POST

--header 'Accept: application/json'

--header 'Authorization: Bearer '<token>'

https://sandbox.crbcos.com/ACH/v1/client-batches/fcb7188f-e051-4f5b-addd-afaa

JSON

{

 "id": "fc0d501d-c36b-45b4-a0d5-afaa00eb6c74",

 "referenceId": "CB0460UJR6DNA",

 "status": "Canceling",

 "accountNumber": "2207975570",

 "paymentCount": 5,

 "debitTotal": 258641,

 "creditTotal": 2863,

 "importCount": 5,

 "productId": "cc62e17f-5912-483e-9e42-aed30112fbb6",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-02-15T09:17:09.077-05:00",

 "importedAt": "2023-02-15T09:17:19.123-05:00",

 "lastModifiedAt": "2023-02-15T09:17:26.8406542-05:00",

 "paymentIdentifiers": [

 "6ed9ea59-2522-4550-8e5d-afaa00eb6c74",

 "dbe36253-06d1-462a-9117-afaa00eb6c74",

 "1e1a08c7-1e60-452b-b22b-afaa00eb6c74",

 "f04793f3-13d9-4d52-b57e-afaa00eb6c74",

 "a0bc6816-e85e-4ba6-bf9a-afaa00eb6c74"

]

}

When the cancellation is complete, it triggers the Ach.Batch.Canceled webhook event.

Note the client batch ID (in this case , fcb7188f-e051-4f5b-addd-afaa00eadb3a)

corresponds to the client batch ID used in the cancellation request.

JSON

{

 "id": "a6593026-ea2c-42b1-ae57-afaa00ec84b2",

 "eventName": "Ach.Batch.Canceled",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2023-02-15T09:21:08.21-05:00",

 "resources": [

 "ach/v1/client-batches/0d4cf4dd-bcbd-4eb7-878d-afaa00ec59c0"

],

 "details": [

 {

 "clientBatchId": "fcb7188f-e051-4f5b-addd-afaa00eadb3a",

 "accountNumber": "2207975570"

 }

]

}

8.3. Simulate inbound ACH payments

Simulations allow testing certain inbound payment flows in our sandbox environment. They

can either be triggered explicitly using the API endpoints outlined below, or in the case of

returns and corrections, automatically once an outbound payment completes. Automatic

simulations are triggered by convention using the payment purpose field.

You can test outbound payments using the payment origination API endpoint. The sandbox

environment automatically takes the payment through the various statuses until it is

Complete. Typically this process takes up to several minutes from start to finish.

Where's my simulated payment?

It is important to note that simulation requests are queued and processed asynchronously

on a schedule. It typically takes a few minutes before they show up as new payment

records.

Inbound Originations

Inbound originations are payments that are originated at another financial institution and

sent to your Cross River account.

These payments can have a transactionType of either Push (funds are being sent to

your Cross River account) or Pull (funds are being taken from your Cross River account).

To simulate an inbound origination, you would manually trigger it using the simulated

inbound originations endpoint. A sample of this request is displayed below.

IMPORTANT

You can only simulate a return or NOC for a payment once it has updated to a status

of Complete.

The receiverAccountNumber is the number of the Cross River account receiving the

payment. See for additional information.

Returns

You can simulate ACH returns manually using the simulation endpoint POST

/v1/payments/simulated-inbound-returns . Populate the desired along with

the ID of the outbound payment that you're trying to simulate a return for. A sample of this

request is displayed below.

Alternatively, simulate a return automatically when originating an outbound payment. To do

this, you'll need to use the purpose field of the payment request. Populate the purpose

Curl

POST /v1/payments/simulated-inbound-originations

{

 "originatorRoutingNumber": "021000021",

 "originatorName": "Tom Smith",

 "originatorIdentification": "99999999",

 "receiverAccountNumber": "1234567890",

 "receiverAccountType": "Checking",

 "receiverName": "John Smith",

 "receiverIdentification": "INV123",

 "secCode": "PPD",

 "description": "Testing",

 "transactionType": "Push",

 "amount": 1000,

 "serviceType": "SameDay",

}

Send an ACH payment

return code

Curl

POST /v1/payments/simulated-inbound-returns

{

 "returnCode": "R01",

 "previousPaymentId": "00000000-0000-0000-0000-000000000000"

}

field with RETURN_RXX, where XX is the return code you wish to test. A sample of this

request is displayed below.

Contested returns have to be anticipated or approved for acceptance. In that case, only the

initial return event is listed as returned, and a subsequent webhook is applied. The

dishonoring of the return relays the funds back to the returning source and no webhook

launches for those or any other rejecting/dishonoring attempts.

Without your direct consent, no returns of any kind occur while outside of the 24-hour

(Corporate return) or 60-day (Consumer return) time frame . Transactions received outside

of both scenarios are subject to review and processing. For any claims issued to the Cross

River ACH Operations team, a notice is provided to the Originating party for Proof of

Authorization or any other corroborating documents that warrant the authorization of the

debit entry. Your RM will also be advised of any matters for awareness.

Corrections

Corrections (notifications of change) can be simulated manually using the simulation

endpoint. You'll need to populate the desired correction code along with the ID of the

Curl

POST /v1/payments

{

 "accountNumber": "2342123458",

 "receiver": {

 "routingNumber": "021200339",

 "accountNumber": "654321987",

 "accountType": "Checking",

 "name": "Glenn Quagmire",

 "identification": "XYZ123"

 },

 "secCode": "PPD",

 "description": "MembFee",

 "transactionType": "Pull",

 "amount": 4999,

 "serviceType": "Standard",

 "purpose": "RETURN_R01"

}

outbound payment that you're truing to simulate a correction for. A sample of this request

is displayed below.

Alternatively, corrections can be simulated automatically when originating an outbound

payment. To do this, you'll need to use the purpose field of the payment request. Populate

the purpose field with NOC_CXX, where XX is the correction code you wish to test. A

sample of this request is displayed below.

Curl

POST /v1/payments/simulated-inbound-corrections

{

 "changeCode": "C01",

 "correctedData": "12345",

 "previousPaymentId": "00000000-0000-0000-0000-000000000000"

}

Curl

POST /v1/payments

{

 "accountNumber": "2342123458",

 "receiver": {

 "routingNumber": "021200339",

 "accountNumber": "654321987",

 "accountType": "Checking",

 "name": "Glenn Quagmire",

 "identification": "XYZ123"

 },

 "secCode": "PPD",

 "description": "MembFee",

 "transactionType": "Pull",

 "amount": 4999,

 "serviceType": "Standard"

 },

 "purpose": "NOC_C01"

}

The example above illustrates an outbound pull payment where an incorrect DFI account

number correction (C01) will be automatically generated by the Cross River system after

the outbound payment is complete.

Additional Information

Since returns and NOCs can only be simulated after an outbound payment reaches a

status of Complete, the outbound payment's service type will affect the timing of your

simulations. An outbound payment with a standard service type would only allow you to

simulate a return the following day via the simulation endpoint. If the simulation was done

using the purpose field of the outbound payment, then you'd automatically receive the

simulated inbound payment two business days after the payment is completed. Some SEC

codes will also encounter this timing scenario, such as IATs which are restricted to a

standard service type.

This is generally why you would encounter any scenarios where you’ve originated a

payment but the status hasn’t changed to Complete in over 24 business hours. If you

originated any payments yesterday, you can use the simulation endpoints to simulate any

return code you want.

Our ACH domain in Sandbox is configured to simulate the bank’s processes around ACH

origination, which means that generally no human intervention is needed to action a

payment in order for it to be processed and moved to a status of Complete. We do not

mark any payments as paid; once you originate a payment, assuming all systemic

validations pass then Sandbox will simulate the payment being sent to the Fed and also

simulate receiving an acknowledgment file from the Fed.

When a payment request is submitted to COS, the bank can reject the payment for various

reasons. For example, a payment which was on hold for compliance reasons was rejected

because the partner was unable to provide additional payment-related information.

Payments which are manually rejected by someone in Cross River do not include any

details for the rejection. Payments which are systemically rejected will contain the reason

within the payment details. For example, if a payment was rejected because the originator

Cross River account had insufficient funds then you would see NSF as the postingCode

within the payment details.

9. Wires

Our ACH tutorials explain how to use our APIs to:

: Originate a wire payment.Send a wire payment

: Request a wire payment from an external account.Send a drawdown request

: Respond to a request for payment sent from an

external account.

Respond to a drawdown request

: Test the system with our simulation endpoints. You can

also use this endpoint to fund a test account.

Simulate an inbound wire

9.1. Send a wire payment

In this tutorial, you'll learn how to:

✅ Originate an outbound wire transfer

✅ Cancel an outbound wire transfer

✅ Originate an outbound international wire transfer

The tutorial uses these API endpoints:

The tutorial uses these webhooks:

If you are new to wires we recommend you read the before starting

this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see the .

wires overview

API basics

API Description

POST /wires/v1/payments Sends an outbound wire transfer

POST /wires/v1/payments/{id}/cancel Cancels a wire transfe

IMPORTANT

Do not poll the APIs for status updates and reconciliation purposes.

Incorporate webhooks into the payment reconciliation process.

Before you begin

Make sure you have

Register the relevant webhook events

To receive the webhook events for this tutorial you need to each specific webhook

event type. Once you are registered, the event objects are sent to the registered URLs.

The event object contains a list of resource identifiers used to download details of each

event.

Originate a outbound payment

Call POST /wires/v1/payments to send the $100 wire transfer. In this example, we supply

values for the following required attributes:

Webhook Description

Wire.Payment.

Sent

Outbound wire has been transmitted to the Federal Reserve and has

been successfully acknowledged. IMAD number is now available.

Wire.Payment.

Received

Inbound wire payment received successfully.

Wire.Payment.

Rejected

Outbound wire could not be processed due to compliance reasons or

was rejected by the Federal Reserve.

Wire.Payment.

Canceled

Outbound wire transfer was canceled

API credentials

Partner ID

Master account number

register

Account number: 2342123458 (originator's account number)

: CTRBusiness function code

A successful API call returns a JSON response with the details of your originated payment:

Acme Co, as the originator , sent a wire transfer direction: Outbound , in the amount

of $100 reflected in amount as 10000 , to Miguel Nelson, the receiver , whose account

is at BK AMER NYC .

Receiver routing number: 026009593 (Fedwire routing number)

Beneficiary information:

: DID

Identifier: 4289341024 (beneficiary's account number)

Name: Miguel Nelson

Amount: 10000 (amount in USD with no decimal point between the dollars and cents)

Purpose: Consulting Fee

IMPORTANT

We strongly recommend that you include an in your request

header to provide duplicate protection should the payment fail.

idempotency key

Sample request

POST /wires/v1/payments

{

 "accountNumber": "2342123458",

 "businessFunctionCode": "CTR",

 "receiverRoutingNumber": "026009593",

 "beneficiary": {

 "idCode": "D",

 "identifier": "4289341024",

 "name": "Miguel Nelson",

 "address1": "250 Kuhn Highway",

 "address2": "Grover, NC 28073"

 },

 "beneficiaryReference": "Invoice A523",

 "amount": 10000,

 "purpose": "Consulting Fee"

}

Sample response

{

 "id": "30423521-52e2-4329-b8f6-ada3011806f1",

 "accountNumber": "2342123458",

 "referenceId": "W21025MV1WA",

 "direction": "Outbound",

 "paymentType": "Transfer",

 "source": "Api",

 "status": "Created",

 "posting": "Pending",

 "amount": 10000,

 "currency": "usd",

 "purpose": "Consulting Fee",

 "businessFunctionCode": "CTR",

 "typeCode": "1000",

 "senderRoutingNumber": "021214891",

 "senderName": "Cross River Bank",

 "senderReference": "W21025MV1WA",

 "receiverRoutingNumber": "026009593",

 "receiverName": "BK AMER NYC ",

 "originatingFi": {

 "idCode": "F",

 "identifier": "021214891",

 "name": "Cross River Bank",

 "address1": "885 Teaneck Rd",

 "address2": "Teaneck NJ 07666",

 "address3": "US"

 },

 "originator": {

 "idCode": "D",

 "identifier": "2342123458",

 "name": "Acme Co",

 "address1": "400 Business Street",

 "address2": "New York NY 10025"

 },

 "beneficiary": {

 "idCode": "D",

 "identifier": "4289341024",

 "name": "Miguel Nelson",

 "address1": "250 Kuhn Highway",

 "address2": "Grover, NC 28073"

 },

 "beneficiaryReference": "Invoice A523",

 "wasReversed": false,

 "isInternational": false,

 "createdAt": "2021-01-25T17:13:27.6503996-05:00",

Confirm payment

After originating the payment, its status changes to Pending or Hold for up to several

hours.

Acknowledgement of the payment by the Fed triggers the Wire.Payment.Sent event. This

indicates successful acceptance of the payment by the Federal Reserve and the availability

of an IMAD.

The payment ID provided in the response body of the payment origination request (id)

appears in the resources object of the wire.Payment.Sent event for ease of

identification. In this case the payment ID is 30423521-52e2-4329-b8f6-ada3011806f1.

 "effectiveDate": "2021-01-25T00:00:00-05:00",

 "originalPaymentId": "30423521-52e2-4329-b8f6-ada3011806f1",

 "partnerId": "bf1baac0-1ae9-45ed-ade6-55baf1ae19a6",

 "productId": "3941dec4-bd4b-4f3e-af7a-bc6d86b8a0dc",

 "lastModifiedAt": "2021-01-25T17:13:27.6573998-05:00",

 "postingCode": "OK"

}

A Pending status lets you know that the payment request is created but has not been

batched for release to the Federal Reserve. The batching process occurs several

times a day.

A Hold status indicates that the payment request is in review and has not yet been

approved for release to the Federal Reserve.

Cancel an outbound payment

You can cancel a wire transfer if it has not reached batch status, which tells you that the

payment is in the process of being released to the Fed. Specifically, you can cancel a wire

transfer with a pending or hold status.

Call POST /wires/v1/payments/{id}/cancel . For the id attribute use the payment ID

returned in the response to POST /wires/v1/payments . In our case, we'll use 30423521-

52e2-4329-b8f6-ada3011806f1.

A successful API call returns a JSON response with the details of your canceled payment

and shows a status value of Canceled.

Sample Wire.Payment.Sent event

{

 "id": "dab167cf-3d77-45ed-ad85-ada30118fc11",

 "eventName": "Wire.Payment.Sent",

 "status": "Pending",

 "partnerId": "30dee145-b6a2-4058-8dc3-ac4000dee91f",

 "createdAt": "2021-01-25T18:03:01.887-04:00",

 "resources": [

 "wires/v1/payments/30423521-52e2-4329-b8f6-ada3011806f1"

],

 "details": []

}

Sample request

curl -X POST

--header 'Accept: application/json'

--header 'Authorization: Bearer <token>'

'https://sandbox.crbcos.com/Wires/v1/payments/<p>Sample request</p>curl -X GE

--header 'Accept: application/json'

--header 'Authorization: Bearer <token>'

'https://sandbox.crbcos.com/Wires/v1/payments/4d4c60b2-e073-409d-bc94-aff0000

Sample response

{

 "id": "30423521-52e2-4329-b8f6-ada3011806f1",

 "accountNumber": "2342123458",

 "referenceId": "W21025MV1WA",

 "direction": "Outbound",

 "paymentType": "Transfer",

 "source": "Api",

 "status": "Canceled",

 "posting": "Posted",

 "amount": 10000,

 "currency": "usd",

 "purpose": "Consulting Fee",

 "businessFunctionCode": "CTR",

 "typeCode": "1000",

 "senderRoutingNumber": "021214891",

 "senderName": "Cross River Bank",

 "senderReference": "W21025MV1WA",

 "receiverRoutingNumber": "026009593",

 "receiverName": "BK AMER NYC ",

 "originatingFi": {

 "idCode": "F",

 "identifier": "021214891",

 "name": "Cross River Bank",

 "address1": "885 Teaneck Rd",

 "address2": "Teaneck NJ 07666",

 "address3": "US"

 },

 "originator": {

 "idCode": "D",

 "identifier": "2342123458",

 "name": "Acme Co",

 "address1": "400 Business Street",

 "address2": "New York NY 10025"

 },

 "beneficiary": {

 "idCode": "D",

 "identifier": "4289341024",

 "name": "Miguel Nelson",

 "address1": "250 Kuhn Highway",

 "address2": "Grover, NC 28073"

 },

 "beneficiaryReference": "Invoice A523",

 "wasReversed": false,

 "isInternational": false,

 "createdAt": "2021-01-25T17:13:27.6503996-05:00",

The Wire.Payment.Canceled event also communicates the payment cancellation, just like

the response to calling POST /wires/v1/payments/{id}/cancel .

The payment ID provided in the response body of the payment origination request (id)

appears in the details object of the wire.Payment.Canceled event for ease of

identification, along with other transfer details. In this case the payment ID is 30423521-

52e2-4329-b8f6-ada3011806f1. Note that the Pending status refers to the webhook and

not the payment.

 "canceledAt":"2021-01-25T19:04:10.7921285-05:00",

 "effectiveDate": "2021-01-25T00:00:00-05:00",

 "originalPaymentId": "30423521-52e2-4329-b8f6-ada3011806f1",

 "partnerId": "bf1baac0-1ae9-45ed-ade6-55baf1ae19a6",

 "productId": "3941dec4-bd4b-4f3e-af7a-bc6d86b8a0dc",

 "lastModifiedAt": "2021-01-25T17:13:27.6573998-05:00",

 "postingCode": "OK"

}

Sample Wire.Payment.Canceled event

{

 "id": "ff1b5fa5-ae3d-48eb-b389-b12901195195",

 "eventName": "Wire.Payment.Canceled",

 "status": "Pending",

 "partnerId": "1e5d3f04-ae24-4af6-9e30-aecf012b99dd",

 "createdAt": "2021-03-04T12:04:15.003-05:00",

 "resources": [

 "wires/v1/payments/30423521-52e2-4329-b8f6-ada3011806f1"

],

 "details": [

 {

 "paymentId": "30423521-52e2-4329-b8f6-ada3011806f1",

 "accountNumber": "2342123458",

 "direction": "Outbound",

 "imad": null,

 "omad": null,

 "paymentType": "Transfer",

 "purpose": "Consulting Fee",

 "amount": "10000",

 "clientIdentifier": null,

 "originatingFiName": "34115033",

 "originatingFiIdentifier": "021214891",

 "originatorName": "Acme Co",

 "originatorIdentifier": "2342123458",

 "originatorAddress1": "400 Business Street",

 "originatorAddress2": "",

 "originatorAddress3": "New York NY 10025",

 "beneficiaryFiName": null,

 "beneficiaryFiIdentifier": null,

 "beneficiaryName": "Miguel Nelson",

 "beneficiaryIdentifier": "4289341024",

 "beneficiaryAddress1": "250 Kuhn Highway",

 "beneficiaryAddress2": "Grover, NC 28073"

 "beneficiaryAddress3": null,

 "beneficiaryReference": "Invoice A523",

 "senderReference": "W21025MV1WA",

 "originatorToBeneficiary1": null,

 "originatorToBeneficiary2": null,

 "originatorToBeneficiary3": null,

 "originatorToBeneficiary4": null,

 "coreTransactionId": "fa7ae94e-0fc0-4c4f-9680-b129011945d8"

 }

]

}

9.2. Send a drawdown request

An outbound wire , also called a reverse wire, asks a someone to send

funds back to you as the requester.

In this tutorial, you'll learn how to:

✅ Send a drawdown request

For this tutorial you'll need to understand these terms. These definitions are specific to this

tutorial. The terms might be used slightly differently for a drawdown response.

drawdown request

If you are new to wires we recommend you read the before starting

this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see the .

wires overview

API basics

The tutorial uses these API endpoints:

The tutorial uses these webhooks.

Term Description

Originator The entity requesting the payment

Beneficiary The entity receiving the payment

Originating financial institution The financial institution wherethe payment request

comes from

Intermediary financial institution A financial institution that a payment is routed through

(required for international wires, otherwise not always

needed)

Beneficiary financial institution The financial institution that receives the payment

request

Drawdown Credit Account

NumberSending financial

institution

The financial institution that sends the payment

request

9 digit routing/ABA number of the originating financial

institution

Receiveringfinancial

institutionRoutingNumber

The routing number of the financial institution that

receives the payment request

Drawdown request A request for someone to send a payment by wire

API Description

POST /wires/v1/payments/corporate-drawdown-

requests

Requests an inbound wire

transfer

Before you begin

Make sure you have:

Register the relevant webhook events

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Request a wire payment

When you initiate an outbound wire drawdown request (DRC 1031), the request is sent to

the specified bank where the account responsible for the payout is held. The bank's

response includes the payment status and other relevant information about the request.

Webhook events are triggered when specific payment statuses are set.

Webhook Description

Wire.Payment.

Sent

Outbound wire has been transmitted to the Federal Reserve and has

been successfully acknowledged. IMAD number is now available.

Wire.Payment.

Received

Inbound wire payment received successfully.

Wire.Payment.

Rejected

Outbound wire could not be processed due to compliance reasons or

was rejected by the Federal Reserve.

API credentials

Account number of the account requesting the payment

Receiver routing number

register

In this tutorial, the PMR Corporation requests a $500,000 wire payment from Lindberg

Incorporated.

1 Call POST /v1/payments/corporate-drawdown-requests .

If you want to enter originator values yourself (instead of the system populating those

attributes based on your account number), ensure that Allow Custom Originator is

enabled on the product or account .

2

your tutorial request example

API call

{

 "accountNumber": "2714035231",

 "originator":

 {

 "idCode": "D",

 "identifier": "2714035231",

 "name": "PMR Corp",

 "address1": "10431 Howe Drive",

 "address2": "Shawnee Mission KS 66206",

 "address3": "US"

 },

 "receiverRoutingNumber": "026009593",

 "drawdownCreditAccountNumber": "021214891",

 "beneficiaryFi":

 {

 "idCode": "F",

 "identifier": "021214891",

 "name": "Cross River Bank",

 "address1": "400 KELBY STREET",

 "address2": "Fort Lee NJ 07024",

 "address3": "US"

 },

 "drawdownDebitAccount":

 {

 "idCode": "D",

 "identifier": "777555333",

 "name": "Lindberg Incorporated",

 "address1": "5 Stop St",

 "address2": "New York NY 52555",

 "address3": "US"

 },

 "beneficiary":

 {

 "idCode": "D",

 "identifier": "2714035231",

 "name": "PMR Corp",

 "address1": "10431 Howe Drive",

 "address2": "Shawnee Mission KS 66206",

 "address3": "US"

 },

 "beneficiaryReference": "testref",

 "originatorToBeneficiary1": "1string",

 "originatorToBeneficiary2": "2string",

 "originatorToBeneficiary3": "3string",

3 A successful API call returns a JSON response with the details of the drawdown

request.

 "originatorToBeneficiary4": "4string",

 "debitDrawdownAdviceCode": "WRE",

 "debitDrawdownInformation1": "string1",

 "debitDrawdownInformation2": "string2",

 "debitDrawdownInformation3": "string3",

 "debitDrawdownInformation4": "string4",

 "debitDrawdownInformation5": "string5",

 "receiverFiInformation1": "Astring",

 "receiverFiInformation2": "Bstring",

 "receiverFiInformation3": "Cstring",

 "receiverFiInformation4": "Dstring",

 "receiverFiInformation5": "Estring",

 "fiToFiInformation1": "Hstring",

 "fiToFiInformation2": "Istring",

 "fiToFiInformation3": "Jstring",

 "fiToFiInformation4": "Kstring",

 "fiToFiInformation5": "Lstring",

 "fiToFiInformation6": "Mstring",

 "amount": 50000000,

 "purpose": "drawdown testing",

 "clientIdentifier": "40708c24-7dee-49c3-b4d2-c48d876f1f5e"

}

We recommend that you save the request-id , you can see in the response

header to use if you need to contact the Cross River Support Team about that

specific call.

Sample response

{

 "id": "e201c363-1039-45cc-99c3-af8500eebb92",

 "accountNumber": "2714035231",

 "referenceId": "W230093GG8S",

 "direction": "Outbound",

 "paymentType": "Drawdown",

 "source": "OpsPortal",

 "status": "Created",

 "posting": "Pending",

 "partnerAuthorization": "NotRequired",

 "partnerAuthorization2": "NotRequired",

 "amount": 50000000,

 "currency": "usd",

 "purpose": "ENTERED BY #6384FF582599E9D9AAADC7BE# - sample drawdown ca

 "businessFunctionCode": "DRC",

 "typeCode": "1031",

 "senderRoutingNumber": "021214891",

 "senderName": "CROSS RIVER BANK",

 "senderReference": "W230093GG8S",

 "receiverRoutingNumber": "026009593",

 "receiverName": "BK AMER NYC ",

 "originatingFi": {

 "idCode": "F",

 "identifier": "021214891",

 "name": "CROSS RIVER BANK",

 "address1": "400 KELBY STREET",

 "address2": "FORT LEE NJ 07024",

 "address3": "US"

 },

 "originator": {

 "idCode": "D",

 "identifier": "2662824164",

 "name": "PMR CORPORATION",

 "address1": "10431 Howe Drive",

 "address2": "Shawnee Mission KS 66206",

 "address3": "US"

 },

 "beneficiaryFi": {

 "idCode": "F",

 "identifier": "021214891",

 "name": "CROSS RIVER BANK",

 "address1": "400 KELBY STREET",

 "address2": "FORT LEE NJ 07024",

 "address3": "US"

 },

4 Successful posting of the payment triggers the wire.payment.received webhook

event.

 "beneficiary": {

 "idCode": "D",

 "identifier": "2662824164",

 "name": "PMR Corporation",

 "address1": "10431 Howe Drive",

 "address2": "Shawnee Mission KS 66206",

 "address3": "US"

 },

 "originatorToBeneficiary1": "1string",

 "originatorToBeneficiary2": "2string",

 "originatorToBeneficiary3": "3string",

 "originatorToBeneficiary4": "4string",

 "beneficiaryReference": "testref",

 "wasReversed": false,

 "isInternational": false,

 "clientIdentifier": "40708c24-7dee-49c3-b4d2-c48d876f1f5e",

 "createdAt": "2023-01-09T09:29:11.9495462-05:00",

 "effectiveDate": "2023-01-09T00:00:00-05:00",

 "originalPaymentId": "e201c363-1039-45cc-99c3-af8500eebb92",

 "partnerId": "cd9c12f4-7691-424a-b38b-af5b0134c611",

 "productId": "a68a0fa5-98fe-4cd5-b626-af5b0137e0cb",

 "lastModifiedAt": "2023-01-09T09:29:11.9651496-05:00",

 "postingCode": "OK"

}

9.3. Respond to a drawdown request

When a bank receives a , it responds by wiring the money that was

asked for to the specified bank account.

In this tutorial, you'll learn how to:

✅ Respond to a drawdown request

For this tutorial you'll need to understand these terms. These definitions are specific to this

tutorial. The terms might be used slightly differently for a drawdown request.

The tutorial uses this API endpoint:

drawdown request

If you are new to wires we recommend you read the before starting

this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see the .

wires overview

API basics

Term Description

Originator The entity sending the payment

Beneficiary The entity receiving the payment

Sending financial institution The financial institution that initiates the drawdown

response

Receiving financial

institution

The financial institution that receives the wire

Drawdown request A request for someone to send a payment by wire

API Description

POST /wires/v1/payments/{id}/drawdown-

responses

Respond to a drawdown request by

sending payment

The tutorial uses these webhooks:

Before you begin

Make sure you have:

Register the relevant webhook events

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Respond to a drawdown request

In this tutorial you will respond to a drawdown request from Mastercard for 12,480,981.47

USD. An incoming drawdown request looks like the code sample below.

Webhook Description

Wire.Payment.

Sent

Outbound wire has been transmitted to the Federal Reserve and has

been successfully acknowledged. IMAD number is now available.

Wire.Payment.

Received

Inbound wire payment received successfully.

Wire.Payment.

Rejected

Outbound wire could not be processed due to compliance reasons or

was rejected by the Federal Reserve.

API credentials

Beneficiary reference ID

Inbound drawdown request

register

Sample inbound drawdown request

{

 "id": "5beea7ed-e9a1-4914-9bdc-af7100eb4dbd",

 "accountNumber": "2805121064",

 "referenceId": "W22354K5ET6",

 "fedBatchId": "9da4f836-7dae-4c54-8dee-af7100eb4dc2",

 "direction": "Inbound",

 "paymentType": "Drawdown",

 "source": "File",

 "status": "Completed",

 "posting": "Posted",

 "partnerAuthorization": "NotRequired",

 "partnerAuthorization2": "NotRequired",

 "amount": 1248098147,

 "currency": "usd",

 "purpose": "",

 "imad": "20221220B1QGC05C001017",

 "omad": "20221220QMGFNP7200015412200510FT01",

 "businessFunctionCode": "DRC",

 "typeCode": "1031",

 "senderRoutingNumber": "021000021",

 "senderName": "JPMORGAN CHASE",

 "senderReference": "1097200354JO",

 "receiverRoutingNumber": "021214891",

 "receiverName": "CROSS RIVER BK",

 "originator": {

 "idCode": "D",

 "identifier": "014053007",

 "name": "MASTERCARD INTERNATIONAL",

 "address1": "INCORPORATE/SERVICES",

 "address2": "2200 MASTERCARD BOULEVARD",

 "address3": "O'FALLON MO 63366- US"

 },

 "beneficiary": {

 "idCode": "D",

 "identifier": "014053007",

 "name": "MASTERCARD INTERNATIONAL",

 "address1": "INCORPORATE/SERVICES",

 "address2": "2200 MASTERCARD BOULEVARD",

 "address3": "O'FALLON MO 63366- US"

 },

 "originatorToBeneficiary1": "ICA 17128 CC SETTLEMENT",

 "beneficiaryReference": "2022122058465489",

 "receiptDate": "1220",

 "receiptTime": "0510",

 "wasReversed": false,

1 Call POST /v1/payments/{id}/drawdown-responses . For this call, some/all of the

attributes are required.

The id attribute must be set to the payment ID of the request that came in. In this

case, 5beea7ed-e9a1-4914-9bdc-af7100eb4dbd.

2 A successful API call returns a JSON response with the details of the payment sent.

From this point, the payment behaves like any .

 "isInternational": false,

 "createdAt": "2022-12-20T09:17:27.307-05:00",

 "processedAt": "2022-12-20T09:27:07.98-05:00",

 "effectiveDate": "2022-12-20T00:00:00-05:00",

 "completedAt": "2022-12-20T09:27:07.98-05:00",

 "postedAt": "2022-12-20T09:27:07.98-05:00",

 "originalPaymentId": "5beea7ed-e9a1-4914-9bdc-af7100eb4dbd",

 "partnerId": "6ee82269-9e89-450e-9065-a9e5012c2645",

 "productId": "701d116d-ceec-4868-94f0-ab3c00e82bde",

 "lastModifiedAt": "2022-12-20T09:27:07.9803522-05:00",

 "postingCode": "OK"

}

Sample "response to drawdown" request

{

"originator":

 {

 "idCode":"D",

 "identifier":"2805121064",

 "name":"CRB FBO RPPS Settlement",

 "address1":"885 Teaneck Rd",

 "address2":"Teaneck, NJ 07666 US"

 },

"beneficiaryReference":"1097200354JO"

}

https://sandbox.crbcos.com/Wires/v1/payments/5beea7ed-e9a1-4914-9bdc-af7

outbound wire payment

JSON

{

 "id": "cb9bd5f3-e720-47dc-ab9b-af7100fe54d4",

 "accountNumber": "2805121064",

 "coreTransactionId": "e3e7a91e-fe43-40c4-a264-af710135d35d",

 "referenceId": "W2235435X38",

 "fedBatchId": "0259951e-e377-4940-b312-af71013af155",

 "fedBatchSequence": 1,

 "direction": "Outbound",

 "paymentType": "DrawdownResponse",

 "source": "OpsPortal",

 "status": "Completed",

 "posting": "Posted",

 "partnerAuthorization": "NotRequired",

 "partnerAuthorization2": "NotRequired",

 "amount": 1248098147,

 "currency": "usd",

 "purpose": "ENTERED BY #61AA4FE6014AFB01143EBB35#",

 "imad": "20221220QMGFT009000933",

 "omad": "20221220B1QGC01R06123612201412",

 "businessFunctionCode": "DRW",

 "typeCode": "1032",

 "senderRoutingNumber": "021214891",

 "senderName": "CROSS RIVER BK",

 "senderReference": "W2235435X38",

 "receiverRoutingNumber": "021000021",

 "receiverName": "JPMORGAN CHASE",

 "originator": {

 "idCode": "D",

 "identifier": "2805121064",

 "name": "CRB FBO RPPS Settlement",

 "address1": "885 Teaneck Rd",

 "address2": "Teaneck, NJ 07666 US"

 },

 "beneficiary": {

 "idCode": "D",

 "identifier": "014053007",

 "name": "MASTERCARD INTERNATIONAL",

 "address1": "INCORPORATE/SERVICES",

 "address2": "2200 MASTERCARD BOULEVARD",

 "address3": "O'FALLON MO 63366- US"

 },

 "beneficiaryReference": "1097200354JO",

 "receiptDate": "1220",

 "receiptTime": "1412",

 "wasReversed": false,

 "isInternational": false,

 "createdAt": "2022-12-20T10:25:59.53-05:00",

 "processedAt": "2022-12-20T14:07:01.817-05:00",

 "effectiveDate": "2022-12-20T00:00:00-05:00",

 "completedAt": "2022-12-20T14:46:58.82-05:00",

 "postedAt": "2022-12-20T13:48:02.473-05:00",

 "originalPaymentId": "5beea7ed-e9a1-4914-9bdc-af7100eb4dbd",

 "partnerId": "6ee82269-9e89-450e-9065-a9e5012c2645",

 "productId": "701d116d-ceec-4868-94f0-ab3c00e82bde",

 "lastModifiedAt": "2022-12-20T14:46:58.8208426-05:00",

 "postingCode": "OK"

}

9.4. Simulate an inbound wire

Simulations allow testing certain inbound payment flows in our sandbox environment.

Simulating an inbound wire transfer is triggered explicitly using the API endpoint outlined

below as well as the webhook employed.

The tutorial uses this API endpoint

Before you begin

Make sure you have

Request a refund by wire transfer

If you are new to wires we recommend you read the before starting

this tutorial.

The tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see the .

wires overview

API basics

API Description

POST

/Wires/v1/payments/simulations

Simulate a post of an inbound wire transfer to an

account

API credentials

Partner ID

 the following webhook:Register

Webhook Description

Wire.Payment.Received Inbound wire has been received from another bank

When you call POST /Wires/v1/payments/simulations , the Cross River sandbox creates

a simulation of an inbound wire transfer to a deposit or subledger account so you can see

what the inbound transfer looks like and test any automations you are designing. In this

example, Stream247 is refunding $19.99 to their customer, Jana Parker, by sending a wire

transfer from their JP Morgan Chase account.

These details show in the API response:

The Stream247 account at JP Morgan Chase as the originator sent an inbound wire

transfer direction: Inbound , to Jana Parker, the beneficiary , via Cross River

Bank2 in the amount of $19.99 reflected in amount as 1999. The payment ID is

e68e32c3-a475-4d0b-a6d8-ae3c01186ff4, as seen in the id attribute.

POST /Wires/v1/payments/simulations request

{

 "accountNumber": "2846838676",

 "originator": {

 "idCode": "D",

 "identifier": "4236598541",

 "name": "Stream247",

 "address1": "257 Dalton Groves",

 "address2": "Barton City, MI 48075"

 },

 "businessFunctionCode": "CTR",

 "senderRoutingNumber": "021000021",

 "senderDiName": "JP Morgan Chase",

 "originatorFi": {

 "idCode": "F",

 "identifier": "021000021",

 "name": "JP Morgan Chase"

 },

 "beneficiaryReference": "Refund Sep2022",

 "amount": 1999

}

POST /v1/payments/simulations response

{

 "id": "e68e32c3-a475-4d0b-a6d8-ae3c01186ff4",

 "accountNumber": "2846838676",

 "referenceId": "W2204571AT5",

 "direction": "Inbound",

 "paymentType": "Transfer",

 "source": "Api",

 "status": "Hold",

 "posting": "Pending",

 "amount": 1999,

 "currency": "usd",

 "purpose": "simulation",

 "imad": "1563371856856662630811",

 "omad": "942955532798176168895701363106962410",

 "businessFunctionCode": "CTR",

 "typeCode": "1000",

 "senderRoutingNumber": "021000021",

 "senderName": "JP Morgan Chase",

 "senderReference": "test",

 "receiverRoutingNumber": "021214891",

 "receiverName": "Cross River Bank2",

 "originatingFi": {

 "idCode": "F",

 "identifier": "021000021",

 "name": "JP Morgan Chase"

 },

 "originator": {

 "idCode": "D",

 "identifier": "4236598541",

 "name": "Stream247",

 "address1": "257 Dalton Groves",

 "address2": "Barton City, MI 48705"

 },

 "beneficiaryFi": {

 "idCode": "F",

 "identifier": "021000021",

 "name": "Cross River Bank",

 "address1": "400 Kelby Street",

 "address2": "Fort Lee, NJ",

 "address3": "US"

 },

 "beneficiary": {

 "idCode": "D",

 "identifier": "2846838676",

 "name": "John Smith",

The Wire.Payment.Received webhook event fires. The payment ID (e68e32c3-a475-

4d0b-a6d8-ae3c01186ff4) appears in the resources object. That is the same ID that you

received in the response to your simulation request.

 "address1": "250 Kuhn Highway",

 "address2": "",

 "address3": "Grover, NC 28073"

 },

 "beneficiaryReference": "Refund Sep2022",

 "receiptDate": "0214",

 "receiptTime": "1201",

 "wasReversed": false,

 "isInternational": false,

 "createdAt": "2022-02-14T12:01:02.460748-05:00",

 "effectiveDate": "2022-02-14T00:00:00-05:00",

 "originalPaymentId": "e68e32c3-a475-4d0b-a6d8-ae3c01186ff4",

 "partnerId": "f03ff044-8883-4939-9d22-ade301661897",

 "productId": "9b8490c9-ccac-4f7d-8b49-ae3800e6b418",

 "lastModifiedAt": "2022-02-14T12:01:02.4967164-05:00",

 "postingCode": "OK"

}

Wire.Payment.Received webhook

{

 "id": "3809b97e-58dc-4082-bc64-ae3c01188e1c",

 "eventName": "Wire.Payment.Received",

 "status": "Pending",

 "partnerId": "f03ff044-8883-4939-9d22-ade301661897",

 "createdAt": "2022-02-14T12:01:28.197-05:00",

 "resources": [

 "wires/v1/payments/e68e32c3-a475-4d0b-a6d8-ae3c01186ff4"

],

 "details": []

}

10. Checks

In this tutorial, you'll learn how to:

✅ Deposit a check

✅ Handle rejected checks

The tutorial uses these API endpoints

The tutorial uses these webhooks.

Before you begin

Make sure you have:

This tutorial assumes you have a knowledge of APIs and how they work. For more

information on sending API calls, see .API basics

API Description

POST

/checks/v1/payments

Provides the necessary information and images to deposit

a check

Webhook Description

Check.Payment.Se

nt

A check deposit was sent to the Federal Reserve for clearing

Check.Payment.Re

jected

An outbound check wasn't processed due to compliance reasons

or rejection by the Federal Reserve

Check.Payment.Re

turned

Receiving bank returned a check to the sender

API credentials

Register relevant webhook events

To receive the webhook events for this tutorial both partner accounts need to

each specific webhook event type. Once you are registered, the event objects are sent to

the registered URLs.

The event object contains a list of resource identifiers used to download details on each

event.

Deposit a check

In this tutorial you're a Banking-as-a-Service (BaaS) partner that offers a deposit account

product to consumers. Your app allows your customers to perform mobile deposits. One of

your customers just made a $1 check deposit into their account using your app, which is

calling the Cross River system to pass the deposit details.

To deposit a check

1 Call POST /Checks/v1/payments . For this call, you must supply the number of the

account where the check is being deposited and images of both the front and back

of the check as Base64-encoded values. See the full list of .

Cross River bank account number

Images of the front and back of the check in Base64 (C9 check) format

register

attributes

Sample request

POST /checks/v1/payments

{

 "accountNumber": "2193590144",

 "amount": 100,

 "frontImage": "image/jpg;base64,/9j/4REyRXhpZgAATU0AKgA...",

 "backImage": "image/jpg;base64,/9j/4QuqRXhpZgAATU0AKg...",

 "isRedeposit": false

}

2 A successful API call returns a JSON response with the details of the check. The

status attribute in the response only tells you that the payment was created. It's

not an indicator of a successful payment. The id attribute provides you with the

payment ID. In this case, it's 9a44fdbf-89e2-4300-8f05-ad9501439bb1. The

schedule attribute shows the schedule for paying the deposit into the account.

Sample response

{

 "id": "9a44fdbf-89e2-4300-8f05-ad9501439bb1",

 "accountNumber": "2193590144",

 "referenceId": "C2436F698K0D",

 "paymentType": "Forward",

 "checkType": "Standard",

 "direction": "Outbound",

 "status": "Created",

 "source": "OpsPortal",

 "posting": "Pending",

 "postingCode": "OK",

 "coreTransactionId": "21ba5fb0-e609-4560-a36f-ad9501439bb1",

 "memoPostId": "dc20e619-c5f7-4890-b3c8-ad9501439bb1",

 "originalPaymentId": "9a44fdbf-89e2-4300-8f05-ad9501439bb1",

 "customerId": "700f0d35-9940-4132-8608-ad89013927a9",

 "payerRoutingNumber": "",

 "payerAccountNumber": "",

 "payeeName": "",

 "checkNumber": "",

 "bofdRoutingNumber": "021214891",

 "sequenceNumber": "1353885824",

 "amount": 100,

 "currency": "usd",

 "recognizedAmount": 0,

 "iqaPassed": false,

 "hasFrontImage": true,

 "hasBackImage": true,

 "isRedeposit": false,

 "policy": "NewAccount",

 "schedule": [

 0,

 0,

 100

],

 "createdAt": "2021-08-31T15:38:13.2795042-04:00",

 "wasReturned": false,

 "purpose": "ENTERED BY #60C367E26DD36A0068580230#",

 "depositBusinessDate": "210831",

 "productId": "d5dc52bb-df80-4a5d-a5a8-ad89013844bd",

 "partnerId": "ede1a60d-3d51-47e8-9a9b-ad8901381f9e",

 "lastModifiedAt": "2021-08-31T15:38:13.2951299-04:00"

3 The Cross River system executes its OCR process to convert the check images into a

format that complies with Federal Reserve Standards. Cross River sends the check

deposit to the Federal Reserve for clearing, which triggers

the Check.Payment.Sent webhook event. Note that the payment ID appears in

the resources array.

If you are registered for the Core.Transaction.Completed webhook event,

you also receive that webhook at this point. When the check payment is

released to the Federal Reserve, the Cross River system executes the core

transaction related to the payment. This does not mean the funds are available.

The schedule attribute in the response indicates the availability schedules of

the deposited funds.

Check validation

A check is systemically validated for compliance when you deposit it, for example the

system verifies that the check has a valid MICR number. Results of this validation appear in

JSON

{

 "id": "160e52d2-4355-4fa3-a421-ad8800f886a2",

 "eventName": "Check.Payment.Sent",

 "status": "Pending",

 "partnerId": "4c5b488d-711d-428a-bdae-ad800131970d",

 "createdAt": "2021-08-31T15:39:51.3-04:00",

 "resources": [

 "checks/v1/payments/9a44fdbf-89e2-4300-8f05-ad9501439bb1"

],

 "details": [

 {

 "paymentId": "9a44fdbf-89e2-4300-8f05-ad9501439bb1",

 "paymentType": "Forward",

 "coreTransactionId": "21ba5fb0-e609-4560-a36f-ad9501439bb1",

 "memoPostId": "dc20e619-c5f7-4890-b3c8-ad9501439bb1",

 "accountNumber": "2193590144",

 "depositBusinessDate": "230808",

 "postingCode": "OK",

 "amount": "10000",

 "recognizedAmount": "100",

 "payerRoutingNumber": "314074269",

 "payerAccountNumber": "28293886",

 "checkNumber": "1237",

 "checkType": "Standard",

 "sequenceNumber": "1353885824",

 "micr": "1237",

 "purpose": "SKIP_IQA",

 "clientIdentifier": null,

 "schedule": "0,0,10000",

 "policy": "Standard",

 "rejectionReason": null,

 "isRedeposit": "False",

 "originalPaymentId": "9a44fdbf-89e2-4300-8f05-ad9501439bb1"

 }

]

}

the body of the response to the deposit request. Non-compliant checks are rejected and

the appears in the rejectionReason field.

Rejected checks

Check rejection triggers the Check.Payment.Rejected webhook event. In this case the

payment ID is b9e53e1c-683e-469c-8f79-ad8800f1ccc.

rejection reason

As already described, the appears in the rejectionReason field of the

event. In the example above, the check payment is rejected because of Duplicate. Address

any check issues with the customer prior to resubmitting the check deposit to avoid

subsequent rejections.

Check.Payment.Rejected webhook event

{

 "id": "96595e06-508f-4d5f-ba80-ad8800f1e69d",

 "eventName": "Check.Payment.Rejected",

 "status": "Pending",

 "partnerId": "4c5b488d-711d-428a-bdae-ad800131970d",

 "createdAt": "2021-08-18T10:40:44.033-04:00",

 "resources": [

 "checks/v1/payments/b9e53e1c-683e-469c-8f79-ad8800f1ccc3"

],

 "details": [

 {

 "paymentId": "b9e53e1c-683e-469c-8f79-ad8800f1ccc3",

 "paymentType": "Forward",

 "coreTransactionId": "2c9292b0-cf01-44c5-b416-b05800de64c7",

 "memoPostId": "ef1aee23-1546-438a-a2bd-b05800de64c7",

 "accountNumber": "2151546989",

 "depositBusinessDate": "230808",

 "postingCode": "OK",

 "amount": "70000",

 "recognizedAmount": "100",

 "payerRoutingNumber": "314074269",

 "payerAccountNumber": "28293886",

 "checkNumber": "1237",

 "checkType": "Standard",

 "sequenceNumber": "0283216503",

 "micr": "1237",

 "purpose": "SKIP_IQA",

 "clientIdentifier": null,

 "schedule": "0,0,70000",

 "policy": "Standard",

 "rejectionReason": "Duplicate",

 "isRedeposit": "False",

 "originalPaymentId": "b9e53e1c-683e-469c-8f79-ad8800f1ccc3"

 }

]

}

rejection reason

